

Lecture Notes in Computer Science 3714
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Henk Obbink Klaus Pohl (Eds.)

Software
Product Lines

9th International Conference, SPLC 2005
Rennes, France, September 26-29, 2005
Proceedings

13

Volume Editors

Henk Obbink
Philips Research Laboratories Eindhoven
Prof. Holstlaan 4, 5656 JA Eindhoven, The Netherlands
E-mail: Henk.Obbink@philips.com

Klaus Pohl
Universität Duisburg-Essen, Campus Essen
Institut für Informatik and Wirtschaftsinformatik
Software Systems Engineering
Schuetzenbahn 70, 45117 Essen, Germany
E-mail: Pohl@sse.uni-essen.de

Library of Congress Control Number: 2005932544

CR Subject Classification (1998): D.2, K.4.3, K.6

ISSN 0302-9743
ISBN-10 3-540-28936-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28936-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11554844 06/3142 5 4 3 2 1 0

Preface

With SPLC 2005 we celebrated the formation of a new conference series, the
International Software Product Line Conference (SPLC) which results from the
“unification” of the former series of three SPLC (Software Product Line) Confe-
rences launched in 2000 in the USA, and the former series of five PFE (Product
Family Engineering) Workshops started in 1996 in Europe.

SPLC is now the premier forum for the growing community of software pro-
duct line practitioners, researchers, and educators. SPLC offers a unique op-
portunity to present and discuss the most recent experiences, ideas, innovations,
trends, and concerns in the area of software product line engineering and to build
an international network of product line champions. An international SPLC Stee-
ring Committee has been established and it is the wish of this committee that
from 2005 on, the SPLC conference will be held yearly in Europe, America, or
Asia. The technical program of SPLC 2005 included.

– two keynotes from David Weiss (Avaya, USA) and Jan Bosch (Nokia, Fin-
land), both leading experts with academic and industrial insights;

– 17 full and 3 short research papers organized around the following themes:
feature modeling, re-engineering, strategies, validation, scoping and archi-
tecture, and product derivation;

– eight experience reports describing commercial application of product line
practices;

– two panels focused on special topics in product line practice and product
line research;

– tool demonstrations;
– a Hall of Fame session that continued the SPLC tradition in a slightly revised

format.

In addition, the technical program was preceded by a tutorial and workshop
day that included ten half-day tutorials presented by well-recognized experts
and five workshops on specific areas of product line research.

The preparation of this programme would not have been possible without
the help and support of many individuals. The role of the Program Committee
was central in the achievement of this high-quality programme. We are indebted
to each PC member for his or her commitment in reviewing the papers, partici-
pating in electronic consensus discussions and, finally, in actively taking part in
the PC meeting, which was held in Essen on May 24, 2005.

VI Preface

Thanks also to the Organizing Committee and in particular to Jean-Marc
Jézéquel for his continuous support at all stages and for making it possible to
host SPLC 2005 in the beautiful city of Rennes. Most especially, we would like to
thank all those who submitted their work to SPLC 2005. Without their willing-
ness to publish and share their work SPLC 2005 would not have been possible.

June 2005 Henk Obbink and Klaus Pohl

Organization

General Co-chairs

Linda Northrop Frank van der Linden

Program Co-chairs

Henk Obbink Klaus Pohl

Organizing Committee

General Chairs Frank van der Linden
Philips, The Netherlands

Linda Northrop
Software Engineering Institute, USA

VIII Organization

Program Chairs Henk Obbink
Philips, The Netherlands

Klaus Pohl
University of Duisburg-Essen, Germany

Local Organization Chair Jean-Marc Jézéquel
INRIA, France

Workshop Chairs Svein Hallsteinsen
SINTEF, Norway

Benoit Baudry
INRIA, France

Panel Chair Charles W. Krueger
BigLever Software, USA

Tool Demonstration Chair Dirk Muthig
Fraunhofer IESE, Germany

Hall of Fame Paul Clements
Software Engineering Institute, USA

Program Committee

Pierre America Philips, The Netherlands
Joe Baumann HP, USA
Sergio Bandinelli ESI, Spain
Len Bass SEI, USA
Günter Böckle Siemens, Germany
Manfred Broy TU Munich, Germany
Paul Clements SEI, USA
Krzysztof Czarnecki University of Waterloo, Canada
Juan Carlos Dueñas University of Madrid, Spain
Birgit Geppert Avaya, USA
Stefania Gnesi IEI-CNR, Italy
Andre van der Hoek University of California, USA
Kyo C. Kang University of Pohang, Korea
Kari Känsälä Nokia, Finland
Tomoji Kishi JAIST, Japan
Stefan Kowalewski RWTH Aachen, Germany
Philippe Kruchten University of British Columbia, Canada
Charles W. Krueger BigLever Software, USA

Organization IX

Tomi Männistö HUT, Finland
John McGregor Clemson University, USA
Nenad Medvidović USC, USA
Dirk Muthig Fraunhofer IESE, Germany
Robert Nord Siemens, USA
Henk Obbink Philips, The Netherlands (Chair)
Rob van Ommering Philips, The Netherlands
Klaus Pohl University of Duisburg-Essen, Germany (Chair)
Serge Salicki Thales, France
Thomas Stauner BMW, Germany
Steffen Thiel Bosch, Germany
Martin Verlage Market Maker, Germany
Matthias Weber DaimlerChrysler, Germany

Additional Reviewers

Michal Antkiewicz
Jose L. Arciniegas
Somo Banerjee
Gerd Beneken
Jon Bentley
Ali Botorabi
Antonio Bucchiarone
Rodrigo Cerón
Alessandro Fantechi
Andreas Fleischmann
Gregory de Fombelle
Claudia Fritsch
Lars Geyer
Piergiorgio Di Giacomo
Pedro Gutierrez
Anna Ioschpe
Vladimir Jakobac
Eric Jouenne
Reinhard Klemm
Giuseppe Lami

Xabier Larrucea
Sam Malek
Jason Xabier Mansell
Chris Mattmann
Franco Mazzanti
Holt Mebane
Audris Mockus
David Morera
Ana R. Moya
Veronique Normand
Mark-Oliver Reiser
Laurent Rioux
Frank Roessler
Roshanak Roshandel
Kathrin Scheidemann
Tilman Seifert
Chiyoung Seo
Iratxe Gomez Susaeta
David Woollard

Table of Contents

Keynotes

Next Generation Software Product Line Engineering
David M. Weiss . 1

Software Product Families in Nokia
Jan Bosch . 2

Feature Modelling

Feature Models, Grammars, and Propositional Formulas
Don Batory . 7

Using Product Sets to Define Complex Product Decisions
Mark-Oliver Reiser, Matthias Weber . 21

The PLUSS Approach - Domain Modeling with Features, Use Cases
and Use Case Realizations

Magnus Eriksson, Jürgen Börstler, Kjell Borg . 33

Re-engineering

Feature-Oriented Re-engineering of Legacy Systems into Product Line
Assets – a Case Study

Kyo Chul Kang, Moonzoo Kim, Jaejoon Lee, Byungkil Kim 45

Reuse without Compromising Performance:
Industrial Experience from RPG Software Product Line for
Mobile Devices

Weishan Zhang, Stan Jarzabek . 57

Extracting and Evolving Mobile Games Product Lines
Vander Alves, Pedro Matos Jr., Leonardo Cole, Paulo Borba,
Geber Ramalho . 70

Short Papers

Determining the Variation Degree of Feature Models
Thomas von der Maßen, Horst Lichter . 82

XII Table of Contents

Modeling Architectural Value: Cash Flow, Time and Uncertainty
Jacco H. Wesselius . 89

A Knowledge-Based Perspective for Preparing the Transition to a
Software Product Line Approach

Gerardo Matturro, Andrés Silva . 96

Strategies

Comparison of System Family Modeling Approaches
Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik 102

Cost Estimation for Product Line Engineering Using
COTS Components

Sana Ben Abdallah Ben Lamine, Lamia Labed Jilani,
Henda Hajjami Ben Ghezala . 113

Innovation Management for Product Line Engineering Organizations
Günter Böckle . 124

Panels

Change is Good. You Go First
Moderator: Charles W. Krueger . 135

A Competition of Software Product Line Economic Models
Moderator: Paul Clements . 136

Validation

Enabling the Smooth Integration of Core Assets: Defining and
Packaging Architectural Rules for a Family of Embedded Products

Tim Trew . 137

Design Verification for Product Line Development
Tomoji Kishi, Natsuko Noda, Takuya Katayama 150

Scoping and Architecture

QFD-PPP: Product Line Portfolio Planning Using Quality Function
Deployment

Andreas Helferich, Georg Herzwurm, Sixten Schockert 162

Table of Contents XIII

Product-Line Architecture: New Issues for Evaluation
Leire Etxeberria, Goiuria Sagardui . 174

Strategies of Product Family Architecture Development
Eila Niemelä . 186

Product Derivation

Defining Domain-Specific Modeling Languages to Automate Product
Derivation: Collected Experiences

Juha-Pekka Tolvanen, Steven Kelly . 198

Supporting Production Strategies as Refinements of the Production
Process

Oscar Dı́az, Salvador Trujillo, Felipe I. Anfurrutia 210

Using Variation Propagation for Model-Driven Management of a
System Family

Patrick Tessier, Sébastien Gérard, François Terrier,
Jean-Marc Geib . 222

Author Index . 235

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, p. 1, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Next Generation Software Product Line Engineering

David M. Weiss

Avaya Labs,
233 Mt. Airy Rd.,

Basking Ridge, NJ 07920
weiss@avaya.com

Software product line engineering has advanced to the point where we know how to
create software product lines on small to medium scales, and some organizations are
having success on a larger scale. Success has come rather slowly, however, if one
considers that many of the key ideas are 25-35 years old. For example, Dijkstra
discussed the idea of program families in the late 1960s, David Parnas and others
clarified the idea and showed how to apply it in real-time systems in the mid 1970s,
and Jim Neighbors invented domain analysis in the early 1980s. Through the 1980s
and 1990s we saw the systematization of product line engineering processes and their
first applications. The first Software Product Lines Conference was held in 2000.
Much of the development of the field has focused on technical aspects of creating
product lines and producing applications. Indeed, most of the technical problems in
creating product lines now seem solvable for many product lines. The Software
Product Line Hall of Fame gives us examples of successful large scale product lines.

Institutionalizing the use of product lines in industrial organizations on a large
scale may now require overcoming the obstacles in creating the right organizations
and in quantifying the economics. Institutionalization often founders on the question
of whether to create an organizational unit dedicated to domain engineering and
developing the product line engineering environment, or whether to distribute the
domain engineering task among different organizational units. Are there other
organizational choices that we can make that solve this problem? How do other
industries, which cannot survive without creating product lines, solve this problem?
The economic justifications are typically cast in terms of a simple, cost-based model.
What, then, is a good model to use?

The questions for the next generation of product lines focus on the following.

1. What are reliable, repeatable techniques for creating large scale product lines
and the organizations that produce them?

2. What is the right economic model for an organization to use in deciding what
product lines to create?

3. What is the next step in bringing organization to the way that we think about
product lines?

I will discuss some possible avenues of approach for each of these problems.

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 2 – 6, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Software Product Families in Nokia

Jan Bosch

Nokia Research Center,
Software and Application Technologies Laboratory,

Helsinki, Finland
Jan.Bosch@nokia.com

Abstract. The level of software development and maintenance investment in
embedded products has increased considerably over the last decade. As soft-
ware product families are providing a proven approach to managing the cost
and quality of software artefacts, Nokia has exploited this approach to software
development for many years. This paper presents some lessons learned and the
key challenges for the successful use and evolution of software artefacts.

1 Introduction

Reuse of existing software artefacts can be viewed as the holy grail of software engi-
neering. For close to four decades, we have, as a software engineering community,
evolved through an extended set of techniques for achieving higher productivity,
more dynamic, responsive software development and lower maintenance cost. Tech-
niques proposed in this context include modules, components, libraries, object-
orientation, frameworks, architecture and, of course, software product families.

Software product families can be viewed as addressing a specific area of software
reuse as most published product families are of an embedded nature, combining me-
chanical, hardware and software elements and less focused on information systems
style functionality. Although this division has long been an accurate one, there is a
clear trend towards blurring the distinctions between these two categories of systems.
Embedded systems are becoming increasingly networked, upgradeable after their
initial deployment, able to dynamically embed in new contexts and record, process
and store increasing amounts of data. Examples of these kinds of systems can, among
others, be found in the telecom, consumer electronics and automotive industry.

The transition from traditional, closed embedded systems to a world in which em-
bedded systems provide platforms for deploying a wide variety of distributed, possi-
bly peer-to-peer applications has a number of implications for research in the area of
software product families as well. These implications include the increasing impor-
tance of hierarchy in product families, the increased complexity of variability man-
agement, the balance domain and product engineering and the role of open-source
software.

The goal and contribution of this article is an analysis of the aforementioned impli-
cations for research in software product families. This analysis is performed from the
perspective of Nokia, but also includes experiences from other companies that I have

 Software Product Families in Nokia 3

worked with in the past and from earlier research performed at the University of
Groningen. Consequently, the results should be relevant for software engineering
organizations in general.

The remainder of this article is organized as follows. In the next section, an over-
view of the three main software product families for mobile terminals at Nokia is
presented. Subsequently, in section 3, a set of challenges is presented that companies,
including to various extent Nokia, are concerned with. Finally, the paper is concluded
in section 5.

2 Overview of Product Families at Nokia

Nokia is a 55.000 person Fortune-500 company with revenue of around 30 billion
euros. The company is organized in four business groups, i.e. Networks, primarily
selling telecom infrastructure equipment and associated services, and Mobile Phones,
Multimedia and Enterprise Solutions, addressing different segments of mobile devices
with products and associated services.

The mobile devices business groups employ three main platforms in their products,
i.e. Series 40, Series 60 and Maemo, an open-source Linux-based platform. The plat-
forms address, with some overlap, mobile devices with different feature sets and price
points. However, these platforms also share some components, so there is hierarchy in
the shared artefacts.

In terms of the maturity model that I presented in [1], the platforms organizations
typically employ the highest maturity model, i.e. the configurable product base ap-
proach. This means that most new features required for products under development
typically are first developed as part of the platform. Once the platform is released the
product configures the new platform release for use and inclusion in the product func-
tionality.

Series 40

The Series 40 platform is a closed, proprietary platform consisting of a in-house de-
veloped operating system, a cellular subsystem managing wireless, cellular connec-
tivity and a subsystem managing the applications and interface to the user. The Series
40 platform is primarily intended for mobile phones with restricted extended func-
tionality, but can be extended with applications written in Java.

Series 60

The Series 60 platform is an open platform based on the Symbian operating system.
The platform is explicitly intended for 3rd party application developers who can de-
velop applications using native C/C++, Java or a scripting language such as Python or
Perl. The architecture consists of an adaptation layer between the hardware and the
Symbian OS, the Symbian OS, the Series 60 layer and a layer containing the core
applications and extended application suite.

4 J. Bosch

Maemo

The third platform, released during Q2 of 2005, used for Nokia mobile devices is
Maemo, a Linux-based development platform using a large number of open-source
components. The first product built based on the platform is the Nokia 770 Internet
Tablet, planned for release during Q3 of 2005. The platform is open and can easily be
used for application development by external developers, but even the platform itself
can be changed and extended by external developers.

Concluding, in this section a brief overview of the three main platforms for Nokia
mobile devices was presented. Every year, several (tens of) products are developed
based on the Series 40 and Series 60 platforms. The Maemo platform is too novel to
provide any information on the number of products.

3 Research Challenges

Software product families have, in Nokia as well as in many other companies, facili-
tated the increasing number of products released every year. The key challenge is
obviously to exploit the commonalities between these products while as efficiently as
possible managing their differences.

Despite these advantages, it is clear that not all problems have been solved and a
number of key challenges remain that need to be addressed. These challenges are
based on experiences from within Nokia, but also from organizations that I have
worked with earlier.

In the list below, some of the key challenges of product-family based software de-
velopment are discussed.

• Hierarchical software product families: In many cases, the initial presenta-
tion of a software product family is a relatively simple flat model with a com-
mon software architecture and set of components and a number of products de-
rived from this architecture and, largely, populated with the shared compo-
nents. In practice, almost all software product families are organized, in one
way or another, in a hierarchical fashion. For instance, the infrastructure may
be standardized for the complete company; a division has developed a plat-
form on top of this infrastructure which is used by a business unit for a set of
product family software artefacts that, in turn, are used to create multiple
products from. In most research and theory development, the hierarchical na-
ture of most product families is ignored, leading to solutions that do not en-
compass the actual complexity of our product development.

• High skill requirements of staff: Although the use of software product fami-
lies can significantly improve productivity, it does require competent staff
with significant skills to achieve these advantages. Due to the larger size of the
overall system, the variation points and associated configuration tasks, valida-
tion of different use cases and several other factors, new R&D staff typically
requires a significant amount of time before becoming productive. In addition,
less competent staff often has challenges in operating efficiently in a product
family context.

 Software Product Families in Nokia 5

• Variability and configurability management: A key challenge that virtually
every organization employing software product families experiences is manag-
ing the, frequently, large numbers of software variation points present in
shared artefacts. The number of variation points easily ranges in the thousands
and may even exceed ten-thousand in some product families. Especially with-
out explicit management of the variation points, the sheer number may become
a significant drain on the R&D resources. A second challenge is that the bind-
ing time and variant addition time of variation points typically evolves to later
stages in the lifecycle. Especially the transition from pre-deployment to post-
deployment binding of variation points often requires non-trivial development
effort as the variation point should either become user-configurable or sur-
rounded with functionality for automated variant selection.

• Make, subcontract or license decisions: One of the key trends in software
engineering is the increasing importance of external software artefacts in the
products or systems shipped to customers. Traditional products would perhaps
use a 3rd party operating system, DBMS and GUI framework, but all product
functionality would be built in-house. More recently the amount of smaller
commercial components available for use in specific parts of the architecture
has increased significantly. In addition, the amount of effort required for soft-
ware development continues to increase, requiring companies to subcontract
the development and maintenance of software components or to license the
functionality. This complicates the decision for architects and product manag-
ers as the choices now include to build the software internal, to subcontract or
to license components. Although the immediate decision is often relatively
manageable, determining the long term consequences of these decisions is
more difficult. For instance, subcontractors may purposely complicate and
bloat their software to create a dependency and the cost for licensing software
may increase significantly after the product family has become critically de-
pendent on it.

• Balancing domain- and application-engineering: An issue that has raised
concern in many organizations is where to place the boundary between func-
tionality that is developed as part of the shared software artefacts and func-
tionality developed as product-specific code. Although there obviously is an
optimum from a technical perspective, business, organizational and other fac-
tors may cause significant deviations from that optimal point. The typical case
is that product units are unwilling to relinquish power and the shared artefacts
incorporate too little functionality. However, also cases exist where the bal-
ance went to far in the other direction and development resources are highly
centralized and the central organization is trying to satisfy the needs of all
product groups that lack resources to develop some of their product-specific,
differentiating functionality.

• Growing software size: In embedded systems, the continuing growth of soft-
ware as part of the overall R&D cost (and sometimes even of the bill of mate-
rials) is a concern for many companies because of the sheer complexity of
software development and the lack of clear end to this trend. The conse-
quences may, among others, include long lead times and quality concerns.

6 J. Bosch

• Role of open-source software: One of the most interesting developments dur-
ing the last decade is the emergence of open-source software and the societal
trend, creative commons, associated with it. Of course, open-source software
offers yet another solution to dealing with the challenges of the growing size
of software in embedded systems and of software systems in general. Different
from popular thought, open-source software is, in practice, not free. Just as any
software component for which the source code is available, it needs to be man-
aged, tested and integrated. Depending on the license, “pollution” of in-house
developed software may occur. In most cases, any improvements developed by
the company should be returned to the community, if not for legal reasons then
for moral reasons. Finally, a concern is that the evolution of open-source soft-
ware can typically not be predicted or steered.

4 Conclusion

For close to four decades, we have, as a software engineering community, evolved
through an extended set of techniques for achieving higher productivity, more dy-
namic, responsive software development and lower maintenance cost. Techniques
proposed in this context include modules, components, libraries, object-orientation,
frameworks, architecture and, of course, software product families.

Software product families are often applied in the context of embedded systems,
which are becoming increasingly networked, upgradeable after their initial deploy-
ment, able to dynamically embed in new contexts and record, process and store in-
creasing amounts of data.

The transition from traditional, closed embedded systems to a world in which em-
bedded systems provide platforms for deploying a wide variety of distributed, possi-
bly peer-to-peer applications has a number of implications for research in the area of
software product families as well. In this paper, we listed a number of these implica-
tions with the intention to raise the awareness of the research community with the
obvious ambition to see these issues resolved. These implications include hierarchical
software product families, high skill requirements of staff, variability and configura-
bility management, make, subcontract or license decisions, balancing domain- and
application-engineering, growing software size and the role of open-source software.

Although software product families have resulted in significant benefits for the or-
ganizations employing the technology, several research challenges remain. This paper
has raised some of the most prominent challenges.

References

1. Bosch, J., Maturity and Evolution in Software Product Lines: Approaches, Artefacts and
Organization, Proceedings of the Second International Conference on Software Product
Lines (SPLC-2), San Diego, CA, USA. Springer LNCS 2379, pp. 257-271, August 2002.

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 7 – 20, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Feature Models, Grammars, and Propositional Formulas

Don Batory

Department of Computer Sciences,
University of Texas at Austin,

Austin, Texas 78712
batory@cs.utexas.edu

Abstract. Feature models are used to specify members of a product-line.
Despite years of progress, contemporary tools often provide limited support for
feature constraints and offer little or no support for debugging feature models.
We integrate prior results to connect feature models, grammars, and
propositional formulas. This connection allows arbitrary propositional
constraints to be defined among features and enables off-the-shelf satisfiability
solvers to debug feature models. We also show how our ideas can generalize
recent results on the staged configuration of feature models.

1 Introduction

A key technical innovation of software product-lines is the use of features to distinguish
product-line members. A feature is an increment in program functionality [29]. A
particular product-line member is defined by a unique combination of features. The set
of all legal feature combinations defines the set of product-line members [23].

Feature models define features and their usage constraints in product-lines
[12][20]. Current methodologies organize features into a tree, called a feature
diagram (FD), which is used to declaratively specify product-line members [2].
Relationships among FDs and grammars [21][13], and FDs and formal models/logic
programming [7][24][26][27] have been noted in the past, but the potential of their
integration is not yet fully realized.

Despite progress, tools for feature models often seem ad hoc; they exhibit odd
limitations and provide little or no support for debugging feature models. This is to be
expected when a fundamental underpinning of feature models is lacking. In this
paper, we integrate prior results to connect FDs, grammars, and propositional
formulas. This connection enables general-purpose, light-weight, and efficient logic
truth maintenance systems (LTMSs)[17] to propagate constraints as users select
features so that inconsistent product specifications are avoided — much like syntax-
directed editors guarantee compilable programs [28]. This connection also allows us
to use off-the-shelf tools, called satisfiability solvers or SAT solvers [16], to help
debug feature models by confirming compatible and incomplete feature sets. To our
knowledge, the use of LTMSs and SAT solvers in feature modeling tools is novel.

Our approach is tutorial. We believe it is important that researchers and
practitioners clearly see the fundamental underpinnings of feature models, and that

8 D. Batory

Fig. 1. Feature Diagram Notations

Fig. 2. A Feature Diagram and its Grammar

light-weight and easy-to-build LTMS algorithms and easy-to-use SAT solvers can
help address key weaknesses in existing feature model tools and theories

2 Feature Models

A feature model is a hierarchically arranged set of features. Relationships between a
parent (or compound) feature and its child features (or subfeatures) are categorized
as:

• And — all subfeatures must be selected,
• Alternative — only one subfeature can be selected,
• Or — one or more can be selected,
• Mandatory — features that required, and
• Optional — features that are optional.

Or relationships can have n:m cardinalities: a minimum of n features and at most m
features can be selected [12]. More elaborate cardinalities are possible [13].

A feature diagram is a graphical
representation of a feature model
[23]. It is a tree where primitive
features are leaves and compound
features are interior nodes. Common
graphical notations are depicted in
Figure 1.

Figure 2a is a feature
diagram. It defines a
product-line where each
application contains two
features r and s, where
r is an alternative
feature: only one of G,
H, and I can be present
in an application. s is a
compound feature that
consists of mandatory features A and C, and optional feature B.

Fig. 3. Parent-Child Relationships in FDs

The connection between FDs and grammars is due to de Jong and Visser [21]. We
will use iterative tree grammars. An iterative grammar uses iteration (e.g., one-or-
more t+ and zero-or-more t* constructs) rather than recursion, to express repetition.

 Feature Models, Grammars, and Propositional Formulas 9

A tree grammar requires every token to appear in exactly one pattern, and the name
of every production to appear in exactly one pattern. The root production is an
exception; it is not referenced in any pattern. More general grammars can be used, but
iterative trees capture the minimum properties needed for our discussions.

Figure 3 enumerates the basic hierarchical relationships that can be expressed in a
feature diagram. Each has a straightforward iterative tree grammar representation:

• Figure 3a is the production s:e
1
e

2
...e

n
 assuming all subfeatures are

mandatory. If a subfeature is optional (as is e
2
), it is surrounded by [brackets].

Thus, the production for Figure 3a is s:e
1
[e

2
]...e

n
.

• Figure 3b is the production: s:e
1
| e

2
|...|e

n
.

• Figure 3c corresponds to a pair of rules: s:t+; and t:e
1
 |e

2
 |...|e

n
;

meaning one or more of the e
i
 are to be selected. In general, each non-terminal

node of a feature diagram is a production. The root is the start production;
leaves are tokens. Figure 2b is the grammar of Figure 2a. An application defined
by the feature diagram of Figure 2a is a sentence of this grammar.

Henceforth, we use the following notation for grammars. Tokens are UPPERCASE and
non-terminals are lowercase. r+ denotes one or more instances of non-terminal r;
r* denotes zero or more. [r] and [R] denote optional non-terminal r and optional
token R. A pattern is a named sequence of (possibly optional
or repeating) non-terminals and (possibly optional)
terminals. Consider the production:

r : b+ A C :: First

 | [D] E F :: Second ;

The name of this production is r; it has two patterns
First and Second. The First pattern has one or more
instances of b followed by terminals A and C. The Second
pattern has optional token D followed by terminals E and F.

Grammars provide a graphics-neutral representation of
feature models. For example, the grammar of Figure 2b could be displayed by the FD
of Figure 2a or the GUI of Figure 4. (The GUI doesn’t display features E and F, as
they are mandatory — nothing needs to be selected). A popular Eclipse plug-in
provides other possible graphical representations of FDs (tree and wizard-based), all
of which are derived from a grammar-like specification [2].

In the next section, we show how iterative tree grammars (or equivalently feature
diagrams) are mapped to propositional formulas.

3 Propositional Formulas

Mannion was the first to connect propositional formulas to product-lines [26]; we
show how his results integrate with those of Section 2. A propositional formula is a
set of boolean variables and a propositional logic predicate that constrains the values
of these variables. Besides the standard , , ¬, , and operations of
propositional logic, we also use choose

1
(e

1
…e

k
) to mean at most one of the

Fig. 4. GUI Specification

10 D. Batory

expressions e
1
…e

k
 is true. More generally, choose

n,m
(e

1
…e

k
) means at least n and at

most m of the expressions e
1
…e

k
are true, where 0 n m k.

A grammar is a compact representation of a propositional formula. A variable of
the formula is either: a token, the name of a non-terminal, or the name of a pattern.
For example, the production:

r : A B :: P1

 | C [r1] :: P2 ; (1)

has seven variables: three {A, B, C} are tokens, two are non-terminals {r, r1}, and
two are names of patterns {P1, P2}. Given these variables, the rules for mapping a
grammar to a propositional formula are straightforward.

Mapping Productions. Consider production r:P
1
|…|P

n
, which has n patterns

P
1
…P

n
. Production r can be referenced in one of three ways: r (choose one), r+

(choose one or more), and r* (choose zero or more). As r* can be encoded as [r+]
(optionally choose one or more), there are only two basic references: r and r+. The

propositional formulas for both are listed below.

 Pattern Formula
r r choose

1
(P

1
,…,P

n
)

r+ r (P
1

… P
n
)

Mapping Patterns. A basic term is either a token or a production reference. A
pattern is a sequence of one or more basic terms or optional basic terms. Let P be the
name of a pattern and let t

1
...t

n
 be a sequence of basic terms. The formula for P is:

P t
1

 P t
2

 ... P t
n
 (2)

That is, if P is included in a design then terms t
1
...t

n
 are also included, and vice versa.

Consider pattern Q whose second term is optional: t
1
[t

2
]...t

n
. The formula for Q is:

Q t
1

 t
2

Q ... Q t
n
 (3)

That is, if Q is included in a design then terms t
1
 and t

n
 are also included, and vice

versa. In the case of optional term t
2
, if t

2
 is selected, Q is also selected; however, the

converse is not true.

Using these rules, production (1) would be translated to the following formula:

r choose
1
(P1,P2) P1 A P1 B P2 C r1 P2

Mapping Grammars. The propositional formula of a grammar is the conjunction of:
(i) the formula for each production, (ii) the formula for each pattern, and (iii) the
predicate root=true, where root is the grammar’s start production. The
propositional formula for the grammar of Figure 2b is:

e=true e r e s r choose
1
(G,H,I) s A B s s C

(4)

 Feature Models, Grammars, and Propositional Formulas 11

Contrary to current literature, feature models are generally not context free grammars.
There are often additional constraints, here called non-grammar constraints, that gov-
ern the compatibility of features. Current tools often limit non-grammar constraints to
simple exclusion (choosing feature I automatically excludes a given feature list) and
inclusion (choosing feature I includes or requires a given feature list). We argue
exclusion and inclusion constraints are too simplistic. In earlier work [4], we
implemented feature models as attribute grammars enabling us to write constraints of
the form:

F implies A or B or C

This means F needs features A, B, or C or any combination thereof. More often, we
found that preconditions for feature usage were based not on a single property but on
sets of properties that could be satisfied by combinations of features, leading to predi-
cates of the form:

F implies (A and X) or (B and (Y or Z)) or C

meaning F needs the feature pairs (A,X), (B,Y), (B,Z), or C, or any combination
thereof. Exclusion constraints had a similar generality. For this reason, we concluded
that non-grammar constraints should be arbitrary propositional formulas. By mapping
a grammar to a propositional formula, we now can admit arbitrary propositional
constraints by conjoining them onto the grammar’s formula. In this way, a feature
model (grammar + constraints) is a propositional formula.

An immediate application of these ideas may help resolve a pesky problem in that
feature models do not have unique representations as feature diagrams. (That is, there
are multiple ways of expressing the same constraints [12]). It is a daunting task to
know if two FDs are equivalent; how tools handle redundant representations is left to
tool implementors [14]. It is possible to show that two FDs are equivalent if their
propositional formulas are equivalent. See [19] for details.

4 Logic Truth Maintenance Systems

Feature models are the basis for declarative domain-specific languages for product
specifications. As users select features for a desired application, we want the
implications of these selections to be propagated, so users cannot write incorrect
specifications. A Logic-Truth Maintenance Systems (LTMS) can used for this purpose.

A LTMS is a classic AI program that maintains the consequences of a
propositional formula. An LTMS application is defined by:

• a set of boolean variables,
• a set of propositional logic predicates to constrain the values of these

variables,1
• premises (assignments to variables that hold universally),
• assumptions (assignments to variables that hold for the moment, but may be

later retracted), and
• inferences (assignments to variables that follow from premises and assump-

tions).

1 Equivalently, a single predicate can be used which is the conjunction of the input predicates.

12 D. Batory

The activities of an LTMS are to:

• compute inferences,
• provide a rationale for variable assignments,
• detect and report contradictions,
• retract and/or make new assumptions, and
• maintain a database of inferences for efficient backtracking.

A SAT (propositional satisfiability) solver relies on an LTMS to help it search the
combinatorial space for a set of variable assignments that satisfy all predicates. The
efficiency of SAT solvers relies on a database of knowledge of previously computed
inferences to avoid redundant or unnecessary searches [17].

What makes an LTMS complicated is (a) how it is to be used (e.g., a SAT solver
requires considerable support) and (b) the number of rules and variables. If the
number is large, then it is computationally infeasible to recompute inferences from
scratch; retractions and new assumptions require incremental updates to existing
assignments. This requires a non-trivial amount of bookkeeping by an LTMS.

Fortunately, a particularly simple LTMS suffices for our needs. First, the number
of rules and variables that arise in feature models isn’t large enough (e.g, in the
hundreds) for performance to be an issue. (Inferences can be recomputed from scratch
in a fraction of a second). Second, searching the space of possible variable
assignments is performed manually by feature model users as they select and deselect
features. Thus, an LTMS that supports only the first three activities previously listed
is needed. Better still, standard algorithms for implementing LTMSs are well-
documented in AI texts [17]. The challenge is to adapt these algorithms to our needs.

The mapping of LTMS inputs to feature models is straightforward. The variables
are the tokens, production names, and pattern names of a grammar. The propositional
formula is derived from the feature model (grammar + constraints). There is a single
premise: root=true. Assumptions are features that are manually selected by users.
Inferences are variable assignments that follow from the premise and assumptions.

In the next sections, we outline the LTMS algorithms that we have used in building
our feature modeling tool guidsl, whose use we illustrate in Section 5.

4.1 LTMS Algorithms

The Boolean Constraint Propagation (BCP) algorithm is the inference engine of an
LTMS. Inputs to a BCP are a set of variables {v

1
…v

m
} and a set of arbitrary

propositional predicates {p
1
…p

n
} whose conjunction p

1
… p

n
 defines the global

constraint (GC) on variable assignments (i.e., the formula of a feature model). BCP
algorithms require the GC to be in conjunctive normal form (CNF) [17]. Simple and
efficient algorithms convert arbitrary p

j
 to a conjunction of clauses, where a clause is

a disjunction of one or more terms, a term being a variable or its negation [17].
BCP uses three-value logic (true, false, unknown) for variable assignments.

Initially, BCP assigns unknown to all variables, except for premises which it assigns
true. Given a set of variable assignments, each clause C of GC is either:

• satisfied: some term is true.
• violated: all terms are false.

 Feature Models, Grammars, and Propositional Formulas 13

• unit-open: one term is unknown, the rest are false.
• non-unit open: more than one term is unknown and the rest are false.

A unit-open term enables the BCP to change the unknown assignment to true. Thus,
if clause C is x ¬y and x is false and y is unknown, BCP concludes y is false.

The BCP algorithm maintains a stack S of clauses to examine. Whenever it
encounters a violated clause, it signals a contradiction (more on this later). Assume
for now there are no contradictions. The BCP algorithm is simple: it marches through
S finding unit-open clauses and setting their terms.

while (S is not empty) {
c = S.pop();
if (c.is_unit_open) {
 let t be term of c whose value is unknown;
 set(t);
}

 }

set(t) — setting a term — involves updating the term’s variable’s assignment
(e.g., if t is ¬y then y is assigned false), pushing unit-open terms onto S, and
signalling contradictions:

set variable of t so that t is true;
for each clause C of GC containing ¬t {

if (C.is_unit_open) S.push(C);
else
if (C.is_violated) signal_contradiction();

}

Invoking BCP on its initial assignment to variables propagates the consequences of
the premises. For each subsequent assumption, the variable assignment is made and
BCP is invoked. Let L be the sequence of assumptions (i.e., user-made variable
assignments). The consequences that follow from L are computed by:

for each variable l in L {
set(l);
BCP();

}

If an assumption is retracted, it is simply removed from L.

A contradiction reveals an inconsistency in the feature model. When contradictions
are encountered, they (and their details) must be reported to the feature model
designers for model repairs.

Example. Suppose a feature model has the contradictory predicates x y and y ¬x.
If x=true is a premise, BCP infers y=true (from clause x y), and discovers clause
(y ¬x) to be violated, thus signalling a contradiction.

Explanations for why a variable has a value (or why a contradiction occurs) requires
extra bookkeeping. Each time BCP encounters a unit-open clause, it keeps a record of
its conclusions by maintaining a 3-tuple of its actions <conclusion, reason,
{antecedents}> where conclusion is a variable assignment, reason is the predicate
(or clause) that lead to this inference, and antecedents are the 3-tuples of variables

14 D. Batory

whose values were referenced. By traversing antecedents backwards, a justification
for a conclusion can be presented in a human-understandable form.

Example. The prior example generates a pair of tuples: #1:<x=true, premise,
{}} and #2:<y=true, x y, {#1}>. The explanation for y=true is: x=true is a
premise and y=true follows from x y.

4.2 A Complete Specification

A product specification (or equivalently, a variable assignment) is complete if the GC
predicate is satisfied. What makes this problem interesting is how the GC predicate is
checked. Assume that a user specifies a product by selecting features from a GUI or
FD. When a feature is selected, the variable for that feature is set to true; a
deselection sets it to unknown. (Inferencing can set a variable to true or false).
Under normal use, users can only declare the features that they want, not what they
don’t want.

At the time that a specification is to be output, all variables whose values are
unknown are assumed false (i.e., these features are not to be in the target product).
The GC is then evaluated with this variable assignment in mind. If the GC predicate is
satisfied, a valid configuration of the feature model has been specified. However, if a
clause of GC fails, then either a complete sentence has not yet been specified or
certain non-grammar constraints are unsatisfied. In either case, the predicate that
triggered the failure is reported thus providing guidance to the user on how to
complete the specification. This guidance is usually helpful.

5 An Example

We have built a tool, called guidsl, that implements the ideas in the previous
sections. guidsl is part of the AHEAD Tool Suite [5] a set of tools for product-line
development that support feature modularizations and their compositions. In the
following section, we describe a classical product line and the guidsl
implementation of its feature model.

5.1 The Graph Product Line (GPL)

The Graph Product-Line (GPL) is a family of graph applications that was inspired by
early work on modular software extensibility [29]. Each GPL application implements
one or more graph algorithms. A guidsl feature model for GPL (i.e., its grammar +
constraints) is listed in Figure 5, where token names are not capitalized.

The semantics of the GPL domain are straightforward. A graph is either Directed
or Undirected. Edges can be Weighted with non-negative numbers or
Unweighted. A graph application requires at most one search algorithm: depth-first
search (DFS) or breadth-first search (BFS), and one or more of the following
algorithms:

 Feature Models, Grammars, and Propositional Formulas 15

Algorithm Required
Graph Type

Required
Weight

Required
Search

Vertex Numbering Any Any
BFS,
DFS

Connected Components Undirected Any
BFS,
DFS

Strongly Connected
Components

Directed Any DFS

Cycle Checking Any Any DFS

Minimum Spanning
Tree

Undirected Weighted None

Shortest Path Directed Weighted None

Fig. 6. Feature Constraints in GPL

• Vertex Numbering (Number): A unique number is assigned to each vertex.
• Connected Components (Connected): Computes the connected components

of an undirected graph, which are equivalence classes under the reachable-from
relation. For every pair of vertices x and y in a component, there is a path from
x to y.

• Strongly Connected Components (StrongC): Computes the strongly
connected components of a directed graph, which are equivalence classes under
the reachable relation. Vertex y is reachable from vertex x if there is a path from
x to y.

• Cycle Checking (Cycle): Determines if there are cycles in a graph. A cycle in
directed graphs must have at least 2 edges, while in undirected graphs it must
have at least 3 edges.

• Minimum Spanning Tree (MSTPrim, MSTKruskal): Computes a Minimum
Spanning Tree (MST), which contains all the vertices in the graph such that the
sum of the weights of the edges in the tree is minimal.

• Single-Source Shortest Path (Shortest): Computes the shortest path from a
source vertex to all other vertices.

// grammar

GPL : Driver Alg+ [Src] [Wgt] Gtp :: MainGpl ;
Gtp : Directed | Undirected ;
Wgt : Weighted | Unweighted ;
Src : BFS | DFS ;
Alg : Number | Connected | Transpose StronglyConnected :: StrongC

| Cycle | MSTPrim | MSTKruskal | Shortest ;
Driver : Prog Benchmark :: DriverProg ;

%% // constraints

Number implies Src ;
Connected implies Undirected and Src ; StrongC implies Directed
and DFS ;
Cycle implies DFS ;
MSTKruskal or MSTPrim implies Undirected and Weighted ;
MSTKruskal or MSTPrim implies not (MSTKruskal and MSTPrim) ; //#
Shortest implies Directed and Weighted ;

Fig. 5. GPL Model

The grammar that defines the order in which GPL features are composed is shown
in Figure 5. Not all combinations of features are possible. The rules that govern
compatibilities are taken directly from algorithm texts [11] and are listed in Figure 6.
These constraints are listed
as additional propositional
formulas (below the %% in
Figure 5). When combined
with the GPL grammar, a
feature model for GPL is
defined. Note: MSTKrus-
kal and MSTPrim are
mutually exclusive
(constraint # in Figure 5); at
most one can be selected in a
GPL product.

16 D. Batory

The GUI that is generated from Figure 5 is shown in Figure 7. The state that is shown
results from the selection of MSTKruskal — the Weighted and Undirected features
are automatically selected as a consequence of constraint propagation. Further,
Shortest, MSTPrim, StrongC, Unweighted, and Directed are greyed out,
meaning that they are no longer selectable as doing so would create an inconsistent
specification. Using an LTMS to propagate constraints, users can only create correct
specifications. In effect, the generated GUI is a declarative domain-specific language
that acts as a syntax-directed editor which prevents users from making certain errors.

Although not illustrated, guidsl allows additional variables to be declared in the
constraint section to define properties. Feature constraints can then be expressed in
terms of properties, like that in [4], to support our observations in Section 3.

Another useful capability of LTMSs is to provide a justification for automatically
selected/deselected features. We have incorporated this into guidsl: placing the
mouse over a selected feature, a justification (in the form of a proof) is displayed. In
the example of Figure 7, the justification for Undirected being selected is:

MSTKruskal because set by user

Undirected because ((MSTKruskal or MSTPrim)) implies

((Undirected and Weighted))

Meaning that MSTKruskal was set by the user, and Undirected is set because the
selection of MSTKruskal implies Undirected and Weighted. More complex expla-
nations are generated as additional selections are made.

Fig. 7. Generated GUI for the GPL Model

5.2 Debugging Feature Models

Debugging a feature model without tool support is notoriously difficult. When we
debugged feature models prior to this work, it was a laborious, painstaking, and error-
prone effort to enumerate feature combinations. By equating feature models with
propositional formulas, the task of debugging is substantially simplified.

An LTMS is helpful in debugging feature models, but only to a limited extent.
Only if users select the right combination of features will a contradiction be exposed.
But models need not have contradictions to be wrong (e.g., Number implies

 Feature Models, Grammars, and Propositional Formulas 17

Weight). More help is needed. Given a propositional formula and a set of variable
assignments, a SAT solver can determine whether there is a value assignment to the
remaining variables that will satisfy the predicate. Thus, debugging scripts in guidsl
are simply statements of the form <S,L> where L is a list of variable assignments and
S is true or false. If S is true, then the SAT solver is expected to confirm that L
is a compatible set of variable assignments; if S is false, the solver is expected to
confirm that L is an incompatible set of assignments. Additional simple automatic
tests, not requiring a SAT solver, is to verify that a given combination of features
defines a product (i.e., a legal and complete program specification). Both the SAT
solver and complete-specification-tests were instrumental in helping us debug the
GPL feature model.

It is straightforward to list a large number of tests to validate a model; test suites
can be run quickly. (SAT solvers have become very efficient, finding variable
assignments for thousands of variables in minutes). Although we cannot prove a
model is correct, we are comforted by the fact that we can now run a much more
thorough set of tests on our models automatically than we could have performed
previously.

6 Staged Configuration Models

Staged configuration has recently been proposed as an incremental way to
progressively specialize feature models [13][14]. At each stage, different groups or
developers make product configuration choices, rather than a configuration being
specified by one person at one time. Specializations involve the selection or
deselection of features and adding more constraints (e.g., converting a one-or-more
selection to single selection).

Staged configuration is accomplished by (1) simplifying the grammar by
eliminating choices or making optional choices mandatory, and (2) simplifying the
non-grammar constraints. Both are required ([14] addresses grammar simplification).
By limiting changes only to grammars, it is possible to preselect MSTKruskal and
deselect Unweighted in a staged configuration and adjust the GPL grammar (making
MSTKruskal mandatory and removing Unweighted). But the resulting model is
unsatisfiable, as MSTKruskal requires Unweighted.

A generalization of the GUI presented earlier could be used to accomplish staged
specifications. Each selectable feature will require a toggle that allows a feature to be
selected (true), deselected (false), or to postpone its choice to a later stage
(unknown). In this way, designers can distinguish features that are preselected from
those that are permanently removed. The LTMS algorithm remains unchanged;
constraints are propagated as before guaranteeing that the resulting model is
consistent. Inferred feature selections and deselections can be used to further simplify
the grammar and its non-grammar constraints.

More generally, where constraints on non-boolean variables (e.g. performance
constraints) are part of a feature model, a more general logic, constraint propagation
algorithms, and predicate simplification algorithms will be needed [15]. However, our

18 D. Batory

work applies to many existing feature models, and we believe that current results on
staged configuration can be improved for these cases with our suggestions.

7 Related Work

There is a great deal of prior work on feature modeling. For brevity, we focus on the
key papers that are relevant. Some feature modeling tools support arbitrary
propositional formulas [8][10], but these formulas are validated at product-build time,
not incrementally as features are selected. We are aware that technologies that
dynamically prune the design space — similar to that presented in this paper — may
be known to pockets of researchers in industry (e.g., [1][7][18]), but the basic
relationship of feature models, attribute grammars, and propositional formulas does
not seem to be widely appreciated or understood.

The connection of feature models to grammars is not new. In 1992, Batory and
O’Malley used grammars to specify feature models [3], and in 1997 showed how
attribute grammars expressed non-grammar constraints [4]. In 2002, de Jonge and
Visser recognized that feature diagrams were context free grammars. Czarnecki,
Eisenecker, et al. have since used grammars to simplify feature models during staged
configuration [12].

The connection of product-line configurations with propositional formulas is due to
Mannion [26]. Beuche [7] and Pure::Variants [27] translate feature models into
Prolog. Prolog is used as a constraint inference engine to accomplish the role of an
LTMS. Non-grammar constraints are expressed by inclusion and exclusion
predicates; while user-defined constraints (i.e., Prolog programs) could be arbitrary.
We are unaware of tools that follow from [7] to debug feature models.

Neema, Sztipanovits, and Karsai represent design spaces as trees, where leaves are
primitive components and interior nodes are design templates [24]. Constraints among
nodes are expressed as OCL predicates, and so too are resource and performance
constraints. Ordered binary decision diagrams (OBDDs) are used to encode this
design space, and operations on OBDDs are used to find solutions (i.e., designs that
satisfy constraints), possibly through user-interactions.

Concurrently and independently of our work, Benavides, Trinidad, and Ruiz-
Cortes [6] also noted the connection between feature models and propositional
formulas, and recognized that handling additional performance, resource, and other
constraints is a general constraint satisfaction problem (CSP), which is not limited to
the boolean CSP techniques discussed in this paper. We believe their work is a
valuable complement to our paper; read together, it is easy to imagine a new and
powerful generation of feature modeling tools that leverage automated analyses.

8 Conclusions

In this paper, we integrated existing results to expose a fundamental connection
between FDs, grammars, and propositional formulas. This connection has enabled us
to leverage light-weight, efficient, and easy-to-build LTMSs and off-the-shelf SAT

 Feature Models, Grammars, and Propositional Formulas 19

solvers to bring useful new capabilities to feature modeling tools. LTMSs provide a
simple way to propagate constraints as users select features in product specifications.
SAT solvers provide automated support to help debug feature models. We believe that
the use of LTMSs and SAT solvers in feature model tools is novel. Further, we
explained how work on staged configuration models could be improved by integrating
non-grammar constraints into a staging process.

We believe that the foundations presented in this paper will be useful in future
tools for product-line development.

Acknowledgements. I thank Ben Kuipers and Ray Mooney for directing me to the
literature on LTMSs. I gratefully acknowledge the helpful comments from the
referees, Mark Grechanik, Jack Sarvela, and Jack Greenfield. I thank Daniel Le Berre
for his help with the SAT4J solver. I also thank Jun Yuan, Karim Jamal, and Maria
Zolotova for their help in building guidsl.

References

[1] American Standard, http://www.americanstandard-us.com/planDesign/
[2] M. Antkiewicz and K. Czarnecki, “FeaturePlugIn: Feature Modeling Plug-In for

Eclipse”, OOPSLA’04 Eclipse Technology eXchange (ETX) Workshop, 2004.
[3] D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical Software

Systems with Reusable Components”, ACM TOSEM, October 1992.
[4] D. Batory and B.J. Geraci, “Composition Validation and Subjectivity in GenVoca

Generators”, IEEE TSE, February 1997, 67-82.
[5] D. Batory, AHEAD Tool Suite, www.cs.utexas.edu/users/schwartz/ATS.html
[6] D. Benavides, P. Trinidad, and A. Ruiz-Cortes, “Automated Reasoning on Feature

Models”, Conference on Advanced Information Systems Engineering (CAISE), July
2005.

[7] D. Beuche, “Composition and Construction of Embedded Software Families”, Ph.D.
thesis, Otto-von-Guericke-Universitaet, Magdeburg, Germany, 2003.

[8] Big Lever, GEARS tool, http://www.biglever.com/
[9] BMW, http://www.bmwusa.com/

[10] Captain Feature, https://sourceforge.net/projects/captainfeature/
[11] T.H. Cormen, C.E. Leiserson, and R.L.Rivest. Introduction to Algorithms, MIT

Press,1990.
[12] K. Czarnecki and U. Eisenecker. Generative Programming Methods, Tools, and

Applications. Addison-Wesley, Boston, MA, 2000.
[13] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing Cardinality-based Feature

Models and their Specialization”, Software Process Improvement and Practice, 2005
10(1).

[14] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged Configuration Through
Specialization and Multi-Level Configuration of Feature Models”, Software Process
Improvement and Practice, 10(2), 2005.

[15] K. Czarnecki, private correspondence, 2005.
[16] N. Eén and N. Sörensson, “An extensible SAT solver”. 6th International Conference on

Theory and Applications of Satisfiability Testing, LNCS 2919, p 502-518, 2003.
[17] K.D. Forbus and J. de Kleer, Building Problem Solvers, MIT Press 1993.
[18] Gateway Computers. http://www.gateway.com/index.shtml

20 D. Batory

[19] M. Grechanik and D. Batory, “Verification of Dynamically Reconfigurable Applica-
tions”, in preparation 2005.

[20] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi, Software Factories: Assembling
Applications with Patterns, models, Frameworks and Tools, Wiley, 2004.

[21] M. de Jong and J. Visser, “Grammars as Feature Diagrams”.
[22] D. Streitferdt, M. Riebisch, I. Philippow, “Details of Formalized Relations in Feature

Models Using OCL”. ECBS 2003, IEEE Computer Society, 2003, p. 297-304.
[23] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. “Feature-Oriented Domain

Analysis (FODA) Feasibility Study”. Technical Report, CMU/SEI-90TR-21, November
1990.

[24] S. Neema, J. Sztipanovits, and G. Karsai, “Constraint-Based Design Space Exploration
and Model Synthesis”, EMSOFT 2003, LNCS 2855, p. 290-305.

[25] R.E. Lopez-Herrejon and D. Batory, “A Standard Problem for Evaluating Product-Line
Methodologies”, GCSE 2001, September 9-13, 2001 Messe Erfurt, Erfurt, Germany.

[26] M. Mannion, “Using first-order logic for product line model validation”. 2nd Software
Product Line Conf. (SPLC2), #2379 in LNCS, 176–187, 2002.

[27] Pure-Systems, “Technical White Paper: Variant Management with pure::variants”,
www.pure-systems.com, 2003.

[28] T. Teitelbaum and T. Reps, “The Cornell Program Synthesizer: a Syntax-Directed
Programming Environment”, CACM, v.24 n.9, p.563-573, Sept. 1981.

[29] P. Zave, “FAQ Sheet on Feature Interactions”, www.research.att.com/~pamela/faq.html

Using Product Sets to Define

Complex Product Decisions

Mark-Oliver Reiser1,2 and Matthias Weber2

1 Technische Universität Berlin – Fachgebiet Softwaretechnik,
Sekretariat FR5-6, Franklinstraße 28/29, D-10587 Berlin, Germany

moreiser@cs.tu-berlin.de
2 DaimlerChrysler AG – Research and Technology, REI/SM,

Alt-Moabit 96 A, D-10559 Berlin, Germany
{first.M.Reiser, Matthias.N.Weber}@DaimlerChrysler.com

Abstract. Product family engineering consists of several activities com-
monly separated into the areas of domain engineering and product engi-
neering. The main part of product engineering is the definition of prod-
uct decisions, which means in the context of feature modeling that for
each feature the product engineer has to define in what products it will
be included. In the automotive domain – and probably in many other
embedded real-time domains as well – the considerations that influence
these feature selections are extremely complex and, at the same time,
need to be documented as closely as possible for later reference. In this
paper, we (1) present a detailed description of this problem and (2) try
to show that existing approaches do not sufficiently meet these concerns.
We then (3) provide a detailed definition of product sets as a means to
solve the problem and (4) show what methodological implications arise
from the use of this concept.

1 Introduction

When applying product family concepts [3,8,13] to the automotive domain, some
specific characteristics of embedded real-time systems in general and automotive
control software in particular have to be taken into account [9,14]. One of the
most important of these characteristics is related to the definition of feature
selections, i.e. defining which features will be included in each product: Here,
this definition is particularly intricate because it is influenced by a multitude of
highly interrelated, complex considerations – ranging from marketing concerns
to legislation issues to technical aspects. This is especially true if an automotive
manufacturer’s vehicle lines are represented as one large product family instead
of several independent, smaller product lines.

We believe that current approaches to modeling feature selections – or prod-
uct decisions – do not fully support this situation and that product sets as de-
fined below can help solve this problem when applied in a certain methodological
manner. To demonstrate this, we first give a summary of the state of the art of
feature selection modeling in Section 2. Then, we describe the aforementioned

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 21–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

22 M.-O. Reiser and M. Weber

difficulty of feature selection modeling in the automotive domain in more detail
(Section 3). Next, we provide a detailed description and definition of product sets
(Section 4 and 5), followed by a discussion of the methodological implications
of these concepts and their advantages and disadvantages (Section 6). The final
two sections are devoted to discussion of related work and concluding remarks.

2 State of the Art

Feature modeling is a well-established means for product family domain engi-
neering [4,7,10,11,12]. Each feature represents a certain characteristic that the
individual products of the product family may have and can therefore be selected
or unselected with respect to a certain product. In other words, an individual
product is defined by the selection status of all features.

Features are commonly organized in a hierarchical manner in the form of
feature trees. Figure 1 shows an example of a notation for such trees, as described
in [4]. Each feature may have one or more child features which may be selected if
the parent feature is selected. Child features can be marked as mandatory (filled
circle) or optional (empty circle) and two or more children may be declared
alternative, meaning that only one of them can be selected while the others have
to be unselected (arc connecting the lines to the alternative children).

In addition, more complex restrictions may be defined: one feature may
“need” another feature – indicating that it may only be selected if the other
one is selected as well – or a feature may “exclude” another feature – meaning
that the excluded feature may no longer be selected if the excluding feature
is selected. Such constraints are usually depicted as arrows marked “needs” or
“excludes”, as shown in Figure 1.

There are many variations of the notation used here, and sometimes a greater
degree of flexibility is provided for defining constraints and dependencies between
features. For an overview, please refer to [1,4,5]. However, the discussion below
is also applicable to such similar feature-modeling techniques.

One of the main purposes of feature modeling is to provide a basis for the
production of individual products during product engineering. More precisely,
depending on the selection of features, the software assets will be configured or

Fig. 1. Example of a feature tree

Using Product Sets to Define Complex Product Decisions 23

adapted and will then be composed to form the final product. The details of
this production mechanism strongly depend on the type of assets in use – e.g.
requirements data bases, user documentation, class diagrams, program code, test
cases – and are beyond the scope of this paper. The important fact here is that
the definition of feature selections is a key aspect of applying feature models
during the product engineering phase.

Several techniques are currently in use to define such feature selections or
product decisions. To provide an overview, we have attempted to divide them
into five different basic approaches:

1. List of selected features
2. Selection criteria for features
3. Links from features to a product model
4. Links from a product model to features
5. Combination of 2. and either 3. or 4.

In some cases where there is only a small number of individual products,
simply listing the selected features for each product is perfectly feasible. The
product engineer explicitly states for each individual product and for each fea-
ture whether or not it will be included in the respective product. At first sight,
this may seem to apply to only a small number of trivial cases because, if the
number of products is small, there may appear to be no need for product family
engineering concepts at all. But this is not true. Even if the number of delivered
products is as low as three or four, there may be hundreds of features that need
to be considered and therefore an elaborate domain engineering could well make
sense. Another situation in which this first approach is often sufficient is where
there is no distinction between a customer-driven configuration and an internal
preconfiguration by development engineers and management personnel.

However, in more complex situations in which there is a huge number of
individual products or in which a preconfiguration is required, feature selec-
tions cannot be defined for each product/feature combination explicitly. A very
straightforward solution is to attribute each feature with a logical statement
(e.g. [4]), which we will henceforth call “selection criterion”. This selection crite-
rion refers to attributes of the individual products such as Country (the country
where the product will be offered), Chassis (station wagon, etc.) or Engine. If and
only if the selection criterion is true will the corresponding feature be selected.
This approach is highly flexible and scales very well and a slightly simplified
form of it has proved viable in development projects at DaimlerChrysler. But it
also has some severe methodological shortcomings, which are outlined in Section
3. Apart from these, there is the disadvantage that it is no longer defined what
products will be on offer, i.e. what combinations of product attributes are valid.

The other two approaches (3. and 4. in the above list) solve this problem by
providing a “product model” in addition to the feature tree. This is a model of
all available individual products, usually organized in tree form, see Figure 2.

Feature selections can then either be defined by a link from the product el-
ement to an included feature (the link is called “includes”) or vice versa (then

24 M.-O. Reiser and M. Weber

Fig. 2. Example of a product model in tree form

called “included in”), see Figure 3. Similarly, “excludes” or “excluded by” links
can be used to state that a feature is not part of a product. Since lower-level
product elements now inherit the “includes”/“excludes” links from their ances-
tors – or lower-level features inherit the “included in”/“excluded by” links – not
all feature selections have to be defined explicitly. But, from that perspective,
this approach is still less efficient than the selection criterion approach.

Note that the product tree can also be viewed as being part of the feature tree
itself, which makes no difference from a conceptual point of view. The products
then simply become features, i.e. a “U.S. station wagon” becomes a feature a
certain product may have. The “includes” or “included in” links can be realized
by “needs” links. The advantage is that this solution manages with fewer element
and link types, while the separation of trees helps to prevent misunderstandings
and enforces a certain methodological approach connected to the idea of product
models.

Finally, the approaches can be combined by having the selection criteria refer
to a product model in addition to (or instead of) product attributes.

3 Problem Description

Listing all selected features for each possible product individually is not feasible if
the number of products is very large. This is especially true for the automotive
domain, [2,14]. There, the products have to be distinguished at least by the
market the car is being built for (e.g. EU, US, Japan, ...), the vehicle line (e.g.
A-Class, C-Class, E-Class for Mercedes-Benz), the body type (e.g. Limousine,
Station Wagon, Cabriolet), the engine types, the transmission types, and a style
category (e.g. Classic, Elegance). If we assume that there are on average three
values for each parameter, we get approx. three to the power of six, i.e. some
700 different products, which is still a conservative estimate. Of course, this
figure must be reduced somewhat because not all combinations reflect products
actually being offered. But even if this reduced the number by 50%, there would

Using Product Sets to Define Complex Product Decisions 25

Fig. 3. Feature selection with “includes” links

still be about 350 products left to be configured. And this does not even take
into account the customer configuration.

When using a product model in tree form, the various product criteria (such
as country, body type, etc.) are put in a certain order depending on what criteria
are applied on each of the tree’s levels. This means that the elements representing
the values of criteria on lower levels are spread over multiple branches of the tree.

Example 1. Let us assume that we have two product criteria: country (with val-
ues EU and USA) and body type (with Limousine, Station Wagon and Cabrio-
let). When the body type is used for distinction on the tree’s first level and the
country on the second level, we obtain multiple elements that only when taken
together represent a certain market (see left tree in Figure 4). In the example, we
thus have three elements representing the U.S. market and another three for the
European market. No matter how the product tree is organized, this situation
remains basically unchanged. The only thing that changes is the criterion for
which the value elements are spread (compare left and right tree in Figure 4).

This separation leads to the problem that statements such as “all cars for
the U.S. market have cruise control” cannot be defined directly but have to be
partly defined at different locations in the product tree, i.e. an “includes” link has
to be defined for each USA element. Technically, this makes no difference. But
from a methodological point of view, it is desirable to document feature selection
decisions as closely as possible because there is a rationale behind each of these
decisions that has to be documented and taken into account when changing the

Fig. 4. Spreading of information in feature trees

26 M.-O. Reiser and M. Weber

product tree or the feature selections later on, e.g. when a new body type is
being added to the product tree.

This problem of product trees can be avoided by using feature selection
criteria that refer to product attributes (approach no. 2 in the above list). But
then a similar problem arises. What if we wished to define that not only the
feature CruiseControl is expected as standard equipment in all cars in the U.S.,
but also some other features such as automatic transmission ? Of course, we
could define this in the selection criteria of the corresponding features. But the
fact that all these selections share the same rationale is lost.

Moreover, the selection criteria of these features will also be influenced by
other considerations and it is not documented how the different considerations for
a single feature led to the feature’s final selection criterion which was recorded.

Example 2. If we wished to state that a certain feature F will be included in
all cars for the entire North American market for some reason (perhaps because
all competitors offer it as standard equipment or it is traditionally expected by
all customers there), and at the same time it has to be included in Canadian
cars for some other reason (perhaps owing to special Canadian legislation), the
final selection criterion for feature F will only state that the feature is included
in the U.S. and Canada – at least in the optimal but unrealistic case that no
other considerations influence the criterion even further. When the motivation
for one of the individual selection statements is no longer justified or when a
market is split in two (e.g. the French- and English-speaking parts of Canada),
it is difficult – if not impossible – to decide how this change affects such a
“combined” selection criterion.

The same applies to the other forms of feature selection definition. Of course,
all this additional information could be put into some separate documentation
on the feature model, but this would lead to a new source of inconsistency.

In the automotive domain, such complex and “orthogonal” considerations
affecting a single feature’s selection are very common in the preconfiguration of
products and therefore a more sophisticated form of modeling is needed, [9].

4 Product Sets

In this section, we begin by describing the concept of product sets in an informal
manner and then, in a second step, give a more precise and formal definition.

4.1 Concept

The notion of product sets is based on the distinction of a feature tree and a
product tree. As outlined in Section 2, the feature and product trees may also be
viewed as two branches of one large feature tree, but for the sake of clarity we will
henceforth assume two separate data structures. Similarly, product attributes
could be used instead of or in addition to the product tree without essentially
changing the concept.

Using Product Sets to Define Complex Product Decisions 27

Fig. 5. Schematic description of product sets

Instead of directly linking the product elements of the product tree to fea-
tures, or the other way round, a dedicated kind of element is used for feature
selection definition: the product set. As the name suggests, each product set rep-
resents one or more individual products. Several product sets may represent the
same set or intersecting sets of individual products. In other words, two product
sets S1 and S2 may, for example, both refer to “all station wagons for the U.S.
market”. The purpose of a product set is to define properties of products, espe-
cially feature selection. To achieve this, product sets may be linked to features
using directed “include” links, meaning that the corresponding feature and all
its descendants will be included in all the products the product set refers to (see
Figure 5). Correspondingly, “exclude” links may be used to show that a certain
feature is not included in the products the product set refers to, even though
“include” links may have been defined for this feature by other product sets
referring to the same products. Put briefly, “exclude” links have a higher prior-
ity than “include” links with respect to one single feature. If there is a conflict
between “include” and “exclude” links pointing to features on different levels of
the feature tree (i.e. if the features pointed to are descendants and ancestors of
each other), the link pointing to the lower-level feature has priority with respect
to this feature and all its descendants.

It is an important characteristic of the product set concept that not all pos-
sible products necessarily need to be modeled explicitly, i.e. the small crosses
in Figure 5 could represent the leaves of a product tree (all products explicitly
modeled), but they could also simply represent certain combinations of product
attribute values (actual products not explicitly modeled).

Finally, product sets also have a textual documentation containing the ratio-
nale for the corresponding inclusion or exclusion as well as other meta-information,
e.g. the name of the person who created it or is responsible for it. The significance
of this is described in detail in Section 6.

4.2 Definition

Let P be the set of all possible products and F the set of all features. Then
a product set S, out of the set of all product sets PS, is defined as a 3-tuple
S = (R, I, E) with ...

28 M.-O. Reiser and M. Weber

R ⊆ P (1)
I, E ⊆ F (2)

I ∩ E = φ (3)

The set of products affected by product set S, its range, is denoted by R(S).
The set I of features included by S is denoted by Inc(S), the set E of excluded
features by Exc(S). As a short form, we define ...

p ∈ S ⇔ p ∈ R(S) (4)

To keep the main definition below from becoming too complex, we need two
auxiliary relations, defined as ...

Inc∗ ⊆ P × F (5)
p Inc∗f ⇔ ∃ S ∈ PS : p ∈ S ∧ f ∈ Inc(S) (6)

Exc∗ ⊆ P × F (7)
p Exc∗f ⇔ ∃ S ∈ PS : p ∈ S ∧ f ∈ Exc(S) (8)

This means that product p is Inc∗-related to feature f if and only if there exists a
product set that directly defines f as being included in p. However, this does not
prove whether f is really included in p. For this, the parents of f in the feature
tree and the “excludes” relations need to be considered as well. This is the next
relation’s task. But beforehand, a definition of the feature tree is needed. This
is provided in the form of the following two (partial) functions:

parent : F → F (9)
isMandatory : F → {true, false} (10)

The relation SelPS (i.e. “selected in”) now specifies whether a certain feature is
selected by way of product sets in a certain product.

SelPS ⊆ F × P (11)
f SelPS p ⇔ [p Inc∗f ∨ (parent(f) SelPS p ∧ isMandatory(f))] (12)

∧ ¬ p Exc∗f

From that, we can deduce various conclusions. For example:

∀ p ∈ P, f ∈ F : p Inc∗f ∧ p Exc∗f ⇒ ¬ f SelPS p (13)

In this context, we are mainly interested in feature selection. But product sets
may also be used to specify other information on certain individual products.
For example, the range of products actually being offered could be defined with
one or more product sets if product attributes are being used without a product
model.

Using Product Sets to Define Complex Product Decisions 29

5 Combining Product Sets and Selection Criteria

Product sets alone are already a sufficient means for defining feature selection.
But they are also very well suited for combination with selection criteria. In
this section, we outline how this can be done technically, before describing the
methodological benefits of such a combined approach in the next section.

A straightforward solution is to view product sets and selection criteria as
two independent means of expression for the same thing: Will a certain feature
be selected in a certain product ? The relation SelSC states whether a feature
is selected through the mechanism of selection criteria and is defined as ...

SelSC ⊆ P × F (14)
f SelSC p ⇔ (selectionCriterion(f) ∨ isMandatory(f)) (15)

∧ parent(f) SelSC p

A feature’s overall selection is then defined by relation Sel:

Sel ⊆ P × F (16)
f Sel p ⇔ f SelPS p ∧ f SelSC p (17)

Alternatively, product sets could also be prioritized. If a feature was directly
included by a product set, i.e. there existed some product set with an “includes”
link leading to this feature, the feature would be selected, whether through its
selection criterion or not. Correspondingly, a directly excluded feature would be
excluded regardless of its selection criterion.

Then, the overall selection relation became a modified version of the product
set definition in (12):

Sel ⊆ F × P (18)
f Sel p ⇔ [p Inc∗f ∨ (parent(f) Sel p ∧ (19)

selectionCriterion(f))] ∧ ¬ p Exc∗f

This means that the selection criteria played a role only with respect to the au-
tomatic selection of the descendants of an included feature and could be “over-
written” by product set inclusion and exclusion.

6 Discussion and Methodological Implications

When using product sets alone, most of the problems described in Section 3 can
be solved. All considerations that influence the decision as to whether a certain
feature is selected in a certain product, together with their precise impact on
that decision, can be recorded for later reference. Not as a separate documenta-
tion that may become outdated and inconsistent if not maintained carefully, but
as a constituent of the actual feature selection definition. How these different
considerations are combined when affecting the same products and/or features

30 M.-O. Reiser and M. Weber

is part of the definition of product sets as shown in Section 4. Thus, the consid-
erations do not have to be “hidden” in a single “combined” selection definition
for each product or feature (depending on the approach).

Example 3. When applying product sets to Example 2, we see that now two
product sets are used to represent this situation: (a) one that states that feature
F will be included in all North American cars and (b) one that states that
it will be included in Canadian cars. Moreover, each product set will give a
rationale for the feature selection decision expressed by the product set and will
name a person who is responsible for it. This additional information then helps
solving conflicts when incorporating changes to feature selection considerations:
for example, when the rationale for (b) became invalid, (b) would be removed
but nevertheless it would be clear that Canadian cars still have to include F
because of (a).

However, these benefits cannot be obtained without a drawback: the process
of manipulating the feature selection definition becomes somewhat more com-
plex. But, with appropriate tool support we believe that this can be dealt with.
For example, a tool that provides a table view of all product sets could offer a
filter mechanism enabling the user to easily find all product sets that affect a
certain product or a certain feature or a certain product/feature pair. Moreover,
if the user were to create a new product set with one or more “include” links,
the tool could pop up a warning if there were other product sets already defined
that excluded the same feature(s) for all or some of the same products. In such
a situation, the potential of product sets becomes obvious: the user would see
exactly what other product sets are in conflict with what he had in mind and
could then consult the attached descriptions of the rationale behind them or
could get in touch with the person declared responsible for them.

All this applies regardless of whether product sets are used alone or in con-
junction with selection criteria. But, in the latter case, additional implications
have to be considered. Through the combination of the two concepts, two alter-
native means of expression are now available for each product/feature selection
definition. Such redundancy in expressiveness only makes sense if it can be jus-
tified from a methodological point of view and if guidelines can be formulated
specifying when to use which form of definition. To find an answer, it is useful
to first examine what viewpoint the user is adopting while using them. When
defining feature selections through product sets, he states that several specific
products include or exclude several features. The view is directed from products
to features, while having an outlook over all features. On the other hand, when
using selection criteria to define feature selections, the engineer has to formulate
a criterion for each single feature separately. Thus, he is always thinking in the
context of a certain feature. We believe that the first situation – applying prod-
uct sets – perfectly matches the marketing and management viewpoint, whereas
the second situation – using selection criteria – fits the technical viewpoint very
well.

Of course, this distinction is not clear in all cases and technically motivated
feature selections can also be defined with product sets. But we believe that

Using Product Sets to Define Complex Product Decisions 31

combining them with selection criteria is an interesting way to separate these two
viewpoints. Another possibility would be to solely use product sets but enable
the user to organize them into groups. These groups of product sets would not
be taken into account in the product set definition and therefore would not have
any direct impact on the feature selections. However, they would help separate
different viewpoints and aspects that influence the selections.

7 Related Work

The idea of product sets as defined above originated in the ITEA project EAST-
EEA, which ended in 2004, [6,15]. The work presented here is a refinement and
extension of this initial idea. For example the precise definition has been formu-
lated, “exclude” links have been added, and conflicts between several product
sets and between product sets and selection criteria have been discussed. More-
over, the concept has been applied to several examples from the automotive
domain.

Another approach for coping with the complexity of feature selection defini-
tion is staged configuration, as presented in [5]: configuration is organized as a
number of consecutive steps, each further specializing the feature model or parts
of it. But we believe that this approach is not sufficient to solve all the problems
described in Section 3, particularly the spreading of selection considerations over
several features’ selection definitions and the need for an explicit documentation
of “orthogonal” and overlapping considerations. This is especially true for non-
technically motivated feature selection (driven by product strategy, marketing,
legislation, etc.). However, it should be used as an advanced alternative to se-
lection criteria and can be combined with product sets in a way similar to that
described in Section 5. Whether only staged configuration or only product sets
are applied, or a combination of the two, probably depends on the specific needs
of the user during product engineering. But additional work is needed to reach
definite conclusions on this.

8 Conclusion

In this paper, we have addressed the issue of product engineering in the form
of feature selection definition. The motivation for doing so was the fact that
in the automotive domain such a definition is extremely complex. Moreover,
the different considerations influencing feature selection have to be documented
in a way that makes them available for future reference when new or changed
considerations have to be integrated.

To meet this challenge, we have presented a precise definition of product
sets, which can be combined with another form of feature selection definition:
selection criteria. Finally, we have described the methodological impact of these
concepts and how they contribute to solving the above problem, especially when
appropriate tool support is provided.

32 M.-O. Reiser and M. Weber

In the near future, we will further examine the concept of product sets, par-
ticularly the prioritization of product sets and the question how feature selection
with product sets can be appropriately supported by tools.

References

1. G. Böckle, P. Knauber, K. Pohl, K. Schmidt: “Software Produktlinien”. dpunkt
Verlag, 2004.

2. S. Bühne, K. Lauenroth, K. Pohl, M. Weber: “Modeling Features for Multi-Criteria
Product-Lines in Automotive Industry”. Workshop on Software Engineering for
Automotive Systems (SEAS), at ICSE 2004, Edinburgh, 2004.

3. P. Clements, L. Northrop: “Software Product Lines: Practices and Patterns”.
Addison-Wesley, 2002.

4. K. Czarnecki, U. W. Eisenecker: “Generative Programming – Methods, Tools and
Applications”. Addison-Wesley, 2000.

5. K. Czarnecki, S. Helsen, U. W. Eisenecker: “Staged Configuration Using Feature
Models”. In: Proceedings of the Third International Conference, SPLC 2004, USA,
LNCS 3154, pp. 266-283, 2004.

6. ITEA EAST-EEA Project Web-Site: http://www.east-eea.net
7. D. Fey, R. Fajta, A. Boros: “Feature Modeling – A Meta-Model to Enhance Us-

ability and Usefulness”. In: Proceedings of the Second International Conference,
SPLC 2, USA, LNCS 2379, pp. 198-216, 2002.

8. J. Greenfield, K. Short, et. al.: “Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools”. Wiley, 2004.

9. K. Grimm: “Software Technology in an Automotive Company – Major Challenges”.
In: Proceedings of the 25th International Conference on Software Engineering, May
3-10, 2003, IEEE Computer Society, pp. 498-503, 2003

10. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson: “Feature Ori-
ented Domain Analysis (FODA) – Feasibility Study”. Technical Report, CMU/SEI-
90-TR-21, 1990.

11. K. C. Kang, S. Kim, J. Lee, E. Shin, M. Huh: “FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference Architectures”. Annals of Software Engi-
neering 5, 1998.

12. K. C. Kang, J. Lee, P. Donohoe: “Feature-Oriented Product Line Enginering”. In:
IEEE Software, Vol. 19, pp. 58-65, 2002.

13. K. Pohl, G. Böckle, F. van der Linden: “Software Product Line Engineering: Foun-
dations, Principles and Techniques”. Springer, Heidelberg, 2005.

14. M. Weber, J. Weisbrod: “Requirements Engineering in Automotive Development
– Experiences and Challenges”. RE2002, pp. 331-340, 2002.

15. M. Weber, U. Freund, H. Lonn, et al.: “An Architecture Description Language for
Developing Automotive ECU-Software”. INCOSE 2004, Toulouse, France, 2004.

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 33 – 44, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The PLUSS Approach - Domain Modeling with Features,
Use Cases and Use Case Realizations

Magnus Eriksson1, Jürgen Börstler2, and Kjell Borg1

1 Land Systems Hägglunds AB, SE-891 82 Örnsköldsvik, Sweden
{Magnus.Eriksson, Kjell.Borg}@baesystems.se

2 Dept. of Computing Science, Umeå University, SE-901 87 Umeå, Sweden
jubo@cs.umu.se

Abstract. This paper describes a product line use case modeling approach
tailored towards organizations developing and maintaining extremely long lived
software intensive systems. We refer to the approach as the PLUSS approach,
Product Line Use case modeling for Systems and Software engineering. An
industrial case study is presented where PLUSS is applied and evaluated in the
target domain. Based on the case study data we draw the conclusion that
PLUSS performs better than modeling according to the styles and guidelines
specified by the IBM-Rational Unified Process (RUP) in the current industrial
context.

1 Introduction

Software intensive defense systems, for example vehicles, are developed in short
series. They are always customized for different customer needs and they are
expected to have an extremely long life span, often 30 years or longer. For an
organization to be competitive in a market like this it is important to achieve high
levels of reuse and effective maintenance. An interesting approach to address issues
like these, which has gained considerable attention both by industry and academia
over the last few years, is known as software product line development. The basic
idea of this approach is to use domain knowledge to identify common parts within a
family of products and to separate them from the differences between the products.
The commonalties are then used to create a product platform that can be used as a
common baseline for all products within the product family.

For embedded software we believe it is important that product line concepts such
as domain modeling are also introduced into the systems engineering process, since
embedded software requirements are for the most part not posed by customers or end
users, but by systems engineering and the systems architecture. Due to earlier positive
single system experiences with use cases, we are therefore interested in identifying a
use case driven product line approach that can be applied by both our systems and
software engineering teams. Unfortunately, we see a number of problems with
existing approaches to product line use case modeling. To address issues in existing
approaches we have developed a domain modeling approach that utilizes features
[10], use cases and use case realizations [12]. For the remainder of this paper the

34 M. Eriksson, J. Börstler, and K. Borg

approach will be referred to as PLUSS (Product Line Use case modeling for Systems
and Software engineering).

The UML Use case meta-model [19] provides poor assistance in modeling
variability [16]. A number of suggestions addressing this issue are described in the
literature. Von der Ma en and Lichter suggest that the UML use case meta-model
should be extended by two new relationships, “Option” and “Alternative” [16].
Jacobson et al. suggest using the “generalization” and “extend” relationships to model
variability in UML use case diagrams [9]. We do however see a fundamental problem
with using use case diagrams for describing variants. Use case diagrams tend to get
cluttered to a degree where it is impossible to get an overview of the variants within a
family. It is furthermore not enough to only manage variability among whole use
cases. It must also be possible to specify variant behavior within use cases. There
have been some proposals on how to do this in the literature, for example the PLUC
notation [5] and RSEB parameters [9]. However, like the UML approaches above
these approaches do not have any means to provide a good overview of the variants
within a family. Most existing product line use case modeling approaches also lack
strong mechanisms to trace variant behavior to the system design and they are
document, not model driven. Using documents instead of a common model is a major
maintenance concern working on extremely long lived systems. Product instantiation
in a document driven approach typically involves copying documents and removing
variant information. This is not good from a long term maintenance perspective since
information is being duplicated.

Our approach is based on the work by Griss et al. on FeatuRSEB [8]. Like Griss et
al. we argue that feature models are better suited for domain modeling than UML use
case diagrams and that a feature model therefore should be used as the high level view
of a product family. In FeatuRSEB a feature model is added to the 4+1 view model
adopted by Jacobson et al. in RSEB [9]. The feature model in FeatuRSEB takes
“center stage” and provides a high-level view of the domain architecture and the
reusable assets in the product family. Even though a feature model is also used in our
approach to provide a high-level view of the variability within a product family, a
fundamental difference exists between PLUSS and FeatuRSEB. In PLUSS the
primary purpose of the feature model is not to take “center stage”, but rather to be a
tool for visualizing variants in our abstract product family use case model. We
maintain one complete use case model for the whole system family and we use the
feature model as a tool for instantiating that abstract family model into concrete
product use case models for each system built within the family.

The main contributions of this paper are: An improved approach to manage variant
behavior in use case models, stronger means to trace variant use case behavior to the
system design and stronger means to generate product use case models from a
common family model.

The remainder of the paper is organized as follows: Section provides an
introduction to PLUSS feature modeling. Section describes PLUSS Use case
modeling and how the PLUSS feature model relate to the use cases. Section also
describes the PLUSS notation for describing variants in use case scenarios and how
product use case models are instantiated form a family model. Section presents an
industrial case study in which the PLUSS approach is applied and evaluated in its
target domain. In section , we summarizes the paper and draw conclusions. 5

4

3
3

2

 The PLUSS Approach - Domain Modeling 35

2 Feature Modeling

Kang et al. first proposed use of feature models in 1990 as part of the Feature
Oriented Domain Analysis (FODA) [10]. A feature is defined as a prominent or
distinctive user-visible aspect, quality or characteristic of a system in FODA. In
feature models, features are organized into trees of AND and OR nodes that represent
the commonalties and variations in the modeled domain. General features are located
at the top of the tree and more refined features are located below. Originally, FODA
described “Mandatory”, “Optional” and “Alternative” features that may have the
relations “requires” and “excludes” to other features. Mandatory features are available
in all systems built within a family. Optional features represent variability within a
family that may or may not be included in products. Alternative features represent an
“exactly-one-out-of-many” selection that has to be made among a set of features. A
“requires” relationship indicates that a feature depends on some other feature to make
sense in a system. An “excludes” relationship between two features indicates that both
features can not be included in the same system.

FODA has no defined mechanism to specify the relation “at-least-one-out-of-
many” [6]. Our experience has shown that this is an important shortcoming. We
address this issue by defining a new feature type called “Multiple Adaptor” in
PLUSS. This feature type is similar to FODA’s alternative features, but instead of
representing the “exactly-one-out-of-many” relationship, it captures the missing
relationship. Its name follows the naming scheme proposed by Mannion et al. for the
equivalent relation in their work on reusable requirements [14]. We have also chosen
to rename alternative features to “Single Adaptor” features following the same
naming scheme. The feature modeling notation used in PLUSS is based on the FODA
notation but it has been slightly modified to better suit our modeling needs as shown
in Fig. 1. As in the original notation a filled black circle represents a mandatory
feature and a non-filled circle represents an optional feature. Single and multiple
adaptor features are represented by the letters ‘S’ and ‘M’ surrounded by a circle.

Domain

a

ab

aac
S

aaa
S

aab
S

ada

adaa

S
adb

S
adc

b

M
baa

M
bab

S
ba

S
bb

bac
M

bbb bbc
M

bba

<<excludes>>

<<requires>>

S Single AdaptorMandatory Optional M Multiple Adaptor Requires Excludes

ac bc

Domain

aa

abab

aacaac
S

aaa
S

aaa
S

aab
S

aab
S

ada
S

ada

adadaaaa

S
adb
S

adb
S

adc
S

adc

bb

M
baa
M

baa
M

bab
M

bab

S
ba
S
ba

S
bb
S

bb

bacbac
M

bbb
M

bbb bbcbbc
M

bba
M

bba

<<excludes>>

<<requires>>

S Single AdaptorS Single AdaptorMandatoryMandatory OptionalOptional M Multiple AdaptorM Multiple Adaptor RequiresRequires ExcludesExcludes

acac bcbc

Fig. 1. An example feature model in the PLUSS notation

To further clarify the PLUSS notation, we have created a mapping between
PLUSS feature constructs and multiplicities [19] as shown in Fig. 2. As shown in Fig.
2 we have also identified a feature construct that should be avoided. Our experience
has shown that this construct, a set containing only optional feature leaf nodes,

36 M. Eriksson, J. Börstler, and K. Borg

0..1 10..* 1..*Multiplicity:

Feature
construct:

Constructs to be avoided:

S S... MM ... S S... MM

S M

...

0..1 10..* 1..*Multiplicity:

Feature
construct:

Constructs to be avoided:

S S...S S... MM ... MM ... S S...S S... MM ... MM

S M

...

Fig. 2. Feature constructs vs. multiplicities, and constructs to be avoided in PLUSS

encourages misuse of the refinement relation used for building the feature tree. This
construct typically appear when a set of multiple adaptor features is mistaken for a set
of optional features.

One shortcoming of the PLUSS feature modeling notation, compared to for
example Czarnecki et al. more expressive Cardinality-based notation [2], is the
inability to model n..m multiplicity. Our experience has however shown that such
constructs are not needed to capture the different types of variability the can exist in
product family use case models. We therefore exclude cardinalities from our notation
for the purpose of improved readability.

3 Use Case Modeling

As we described in [4], we have chosen to adopt the so called “Black Box Flow of
Events” notation described in the Rational Unified Process for Systems Engineering
(RUP-SE) [17] shown in Fig. 3 (a) for describing use case scenarios. This notation is
used for tabular descriptions of use case scenarios in natural language. We argue that
the notation has two major advantages over tradition natural language scenario
descriptions. It forces analysts to always think about interfaces since separate fields
exist for describing actor and system actions. It also provides a strong mechanism to
relate non-functional requirements to use cases using the “Blackbox Budgeted
Requirements” column.

A use case realization describes how a particular use case is realized within the
system design in terms of collaborating design elements [12]. As we described in [4],
we have chosen to describe use case realizations in natural language description based
on the RUP-SE “White Box Flow of Events” [17] shown in Fig. 3 (b). We have
chosen natural language descriptions of use case scenarios and use case realizations
since the PLUSS approach must be applicable for both systems and software
engineering. This increases the number and diversity of stakeholders interested in the
models and thereby makes for example UML unsuitable for the purpose. Our natural
language descriptions can however be supplemented with UML diagrams as needed.

DesignElement_1…

…
…
…
…
…
…

Whitebox Action

DesignElement_2…
DesignElement_3…

It shall…

…
…
…
…
…
…

Whitebox
Budgeted Req.

…
…

1

2

3

Step

The Actor…

…

The use
case ends
when…

Actor Action

The System…

…

…

Blackbox
System Response

It shall…

…

…

Blackbox
Budgeted Req.

(a) (b)

DesignElement_1…

…
…
…
…
…
…

Whitebox Action

DesignElement_2…
DesignElement_3…

It shall…

…
…
…
…
…
…

Whitebox
Budgeted Req.

…
…

1

2

3

Step

The Actor…

…

The use
case ends
when…

Actor Action

The System…

…

…

Blackbox
System Response

It shall…

…

…

Blackbox
Budgeted Req.

(a) (b)

DesignElement_1…

…
…
…
…
…
…

Whitebox Action

DesignElement_2…
DesignElement_3…

It shall…

…
…
…
…
…
…

Whitebox
Budgeted Req.

…
…

1

2

3

Step

The Actor…

…

The use
case ends
when…

Actor Action

The System…

…

…

Blackbox
System Response

It shall…

…

…

Blackbox
Budgeted Req.

(a) (b)

Fig. 3. The (a) Blackbox flow of events used for describing use case scenarios, and (b) the
Whitebox flow of events used for describing use case realizations

 The PLUSS Approach - Domain Modeling 37

3.1 The PLUSS Approach to Modeling Variants in Use Case Models

As mentioned in section , the basic idea of PLUSS is to maintain one common and
complete use case model for whole product family. To do this, it must be possible to
manage variability in the model. We have identified four types of variants that can
exist in use case models for product families. The first type regards whole use case
that can vary between systems built within a product family. We model this by
relating one or more use cases with a feature of any type in the feature model. The
second type of variability regards the set of included use case scenarios within each
use case. We model this by relating one or more scenarios with a feature of any type
in the feature model. The third type regards the set of included steps in each use case
scenario. We model this by relating scenario steps with features of any type in the
feature model. The fourth and final type of variability regards cross-cutting aspects
that can affect several use cases on several levels. Cross-cutting aspects are modeled
as use case parameters in PLUSS, these parameters must be related to a set of single
adaptor features in the feature model. Gomaa [7] proposed to model each feature as a
use case package. PLUSS extended this idea, saying that possibly a whole set of
features compose a use case package. This have the advantage of enabling us to also
visualize variants within use cases specifications using the feature model.

A meta-model for integration of features, use cases and use case realizations is
shown in Fig. 4. It describes how use cases, scenarios and scenario steps are included
by feature selections. This meta-model is an extension of the meta-model presented in
[4] that also show how these included use case scenario steps prescribes a certain set
of design element via use case realizations. Variant use case behavior is thereby
traced to the system design.

Feature

include

*

*

0..1

require

refine

*

exclude

Domain Model

*

*
*

1

Parameter

Global Parameter Local Parameter

1

Use Case

1..*

*

*

instantiate

1

Scenario

Step

include

*

include

* 0..1 *

Design Element

realize
1..*

1..*

System Family
2..*composed-of

1..*

1..* *

include

1..*

1

1..*

0..1

Use Case Realization
1

1

*
1..*

*

System

Feature

include

*

*

0..1

require

refine

*

exclude

Domain Model

*

*
*

1

Parameter

Global Parameter Local Parameter

1

Use Case

1..*

*

*

instantiate

1

Scenario

Step

include

*

include

* 0..1 *

Design Element

realize
1..*

1..*

System Family
2..*composed-of

1..*

1..* *

include

1..*

1

1..*

0..1

Use Case Realization
1

1

*
1..*

*

System

Fig. 4. The PLUSS Meta-model

Change cases, first proposed by Ecklund et al. [3], are basically use case that
specifies anticipated changes to a system. Change cases also provide the relation
“impact link” that creates traceability to use cases whose implementations are affected
if the change case is implemented. In PLUSS, change cases are primarily used to
mark proposed, but not yet accepted functionality in a domain. New requirements are
first modeled as change cases, however once accepted for implementation in a system
within a family, these change cases are transformed to use cases.

1

38 M. Eriksson, J. Börstler, and K. Borg

3.2 The PLUSS Notation for Describing Variants in Use Case Specifications

As we described in [4], the step identifier of the blackbox flow of events notation
discussed in section can be extended to describe variants in use case scenarios as
shown in Fig. 5. A step identified by a number describes a mandatory step in the
scenario, as it does in the original notation. Several steps identified with the same
number identify a number of mutually exclusive alternatives for one mandatory step
in the scenario. These steps must be related to a set of single adaptor features with a
mandatory parent in the feature model. Several steps identified with the same number
and a consecutive letter identify a number of alternatives for one mandatory step in
the scenario out of which at least one must be selected. These steps must be related to
a set of multiple adaptor features with a mandatory parent in the feature model. A step
identified by a number within parenthesis identifies an optional step in the scenario.
Optional steps must be related to an optional feature in the feature model. Several
steps identified with the same number within parenthesis and a consecutive letter
identify a number of alternatives for one optional step in the scenario out of which at
least one must be selected. These steps must be related to a set of multiple adaptor
features with an optional parent feature in the feature model. Several steps identified
with the same number within parenthesis identify a number of mutually exclusive
alternatives for one optional step in the scenario. These steps must be related to a set
of single adaptor features with an optional parent in the feature model.

Jacobson et al. introduced the concept of use case parameters as part of the RSEB
in [9]. Mannion et al. distinguished between local parameters and global parameters
in their work on reusable natural language requirements [14]. We find this distinction
useful also when working with use cases. In PLUSS, the scope of a local parameter is
the use case in which it resides and the scope of a global parameter is the whole
domain model. Like Mannion et al. we use the symbols ‘$’ and ‘@’ respectively to
denote local and global parameters as shown in step ‘(4)’ and ‘(5)b’ of Fig. 5.

Step Actor Action
Blackbox

System Response
Blackbox

Budgeted Req.
Mandatory step

Optional step

Exactly one to be
selected for a
mandatory step

At least one to be
selected for a
mandatory step

Exactly one to be
selected for an
optional step

At least one to be
selected for an
optional step

1

2
3a
3b
3c
(4)
(5)a
(5)b
(5)c
(6)
(6)
(6)

2
2

The Actor…

…
…
…
…
…
…
…
…
…
…
…

…
…

The System…

…
…
…
…
… @PARAM_1 …

…
… $PARAM_2 …

…
…
…
…

…
…

It shall…

…
…
…
…
…
…
…
…
…
…
…

…
…

S S S

M M M

S S S

M M M

Step Actor Action
Blackbox

System Response
Blackbox

Budgeted Req.
Mandatory step

Optional step

Exactly one to be
selected for a
mandatory step

At least one to be
selected for a
mandatory step

Exactly one to be
selected for an
optional step

At least one to be
selected for an
optional step

1

2
3a
3b
3c
(4)
(5)a
(5)b
(5)c
(6)
(6)
(6)

2
2

The Actor…

…
…
…
…
…
…
…
…
…
…
…

…
…

The System…

…
…
…
…
… @PARAM_1 …

…
… $PARAM_2 …

…
…
…
…

…
…

It shall…

…
…
…
…
…
…
…
…
…
…
…

…
…

S S SS S S

M M MM M M

S S SS S S

M M MM M M

Fig. 5. The PLUSS notation for describing variants in use case scenarios

3.3 Product Instantiation in the PLUSS Approach

Although the actual organization may vary, typically, when a new product is going to
be added to a product family, initial requirements analysis is performed by a product
team. This analysis will result in a set of change requests (CR) regarding new

3

 The PLUSS Approach - Domain Modeling 39

requirements (change cases) to be added to the domain model and regarding features
that should be included in the new system. The domain engineering team is then
responsible for performing change impact analyses on the change requests. A domain
engineering change control board (CCB) may then decide if the requested set of
requirements will be allowed in the product. Since a common use case model is
maintaining for a whole product family in PLUSS, product instantiation is then
basically done by adding any new requirements to the model and then using the
feature model to choose among its variants. The set of included features directly
correspond to a specific set of included use cases for the product. A product use case
model is then generated by applying a filter to the domain model sorting out features
not included in the current system. This will result in three types of reports: A “Use
Case Model Survey” including all use cases included in the product, and “Use Case
Specifications”, and “Use Case Realizations” for all use case in the survey.

4 Case Study

The objective of this case study was to apply the PLUSS approach in the target
domain to evaluate its feasibility. The hypothesis to be tested in the method
evaluation and its null hypothesis were

H1: The PLUSS approach performs better than modeling according to the
company process baseline in a product line setting.

H0: The PLUSS approach performs equal to, or worse than the modeling
according to company process baseline.

A number of response variables relevant for measuring the performance of the
approach were identified as part of the case study design. Examples are: effort for
learning and understanding notations used; effort for long term maintainability of
specifications; and usefulness of the resulting models.

4.1 Study Context

The case study was preformed with the Swedish defense contractor Land Systems
Hägglunds. Land Systems Hägglunds is a leading manufacturer of combat vehicles,
all terrain vehicles and a supplier of various turret systems. The company process
baseline for software development, against which PLUSS was compared, is
development according to the IBM-Rational Unified Process (RUP) [12].

The PLUSS approach was applied on the Vehicle Information System (VIS). The
VIS subsystem is responsible for tasks such as displaying video, providing electronic
manuals, performing onboard system test and diagnostics, displaying logs, displaying
system status and reporting system alarms. The development of VIS has recently gone
from clone-and-own reuse [1], to adopting a software product line approach. The
transformation to software product line development was initiated by forming a
domain engineering team which is now responsible for development and maintenance
of the VIS core assets. At the time of the case study, the domain engineering team had
successfully delivered core assets to their first customer project and was in the process
of analyzing requirements for its second customer project.

40 M. Eriksson, J. Börstler, and K. Borg

The main CASE tools used for supporting the PLUSS approach were the
requirements management tool Telelogic DOORS and the UML modeling tool IBM-
Rational Rose. Rose was used for drawing feature graphs and UML Use case
diagrams. DOORS was used for managing the overall domain model. Each feature
was represented as an object in the database with a number of attributes; like feature
type, products including the feature and a use case diagram. Each use case was
represented as a module in DOORS. Scenario steps, both blackbox and whitebox,
were represented as objects in those modules. Traceability links were used to relate
features to use cases, scenarios and scenario steps according to the PLUSS meta-
model shown in Fig. 4. A small number of scripts were written in DOORS to aid the
modeling.

The domain modeling activity stared with a four hour introductory lecture on the
PLUSS approach to the domain engineering team. After the lecture, the domain team
had a four hour brainstorming session identifying and documenting features in the
feature model. After this session, the domain engineering team split-up and only the
product line analysis team continued the domain modeling for the reminder of the
study. The product line analysis team consisted of three people, out of which two
performed most of the modeling activities and the third mainly acted as a tool
specialist, responsible for customizing DOORS to better support PLUSS.

4.2 Method

The case study involved collecting data from four different types of sources. The first
type of data was collected by examining documentation [18]. Modeling artifacts from
the early phases of the project were inspected to verify that they where used in the
proper manner. The second type of data was collected by participant observation
[18]. The research team assumed a mentoring role for the product line analysis team
and could thereby get first hand information about any problems they ran into during
the modeling activities. The third type of data was collected through questionnaires
[11]. During the evaluation the product line analysis team filled out a questionnaire
describing their experiences applying the approach. The questionnaire was designed
to have both specific and open ended questions to also elicit unexpected types of
information. The final type of data was collected trough interviews [18]. A total
number of nine people, representing the domain engineering team, the product
development team, the systems engineering team and technical management were
interviewed to gather their views on the usefulness of the models and on possible pros
and cons with the PLUSS approach. Interviews began with a short introduction to the
research being performed. After the introduction, the VIS domain model and a
product instance of the model were shown and discussed with each interviewee.
Interviews proceeded in a semi-structured manner, trying to elicit as much
information as possible about opinions and impressions regarding PLUSS.

The different types of data collected were first analyzed individually to find
patterns and trends in the responses, then analyzed all together and conclusions were
drawn about the case study hypothesis.

 The PLUSS Approach - Domain Modeling 41

4.3 Threats to Validity

To minimize threats to the study’s construct validity, the case study hypothesis and its
null hypothesis were stated as clearly and as early as possible in the case study design
to aid in identifying correct and relevant measures [11]. To minimize threats to the
study’s internal validity, the case study project was staffed using the organizations
normal staff-allocation procedures. Everyone involved in the case study had good
knowledge of modeling according to the company process baseline, against which the
PLUSS approach was compared [11]. Furthermore, interviewees were chosen in
collaboration with the organization’s management to ensure that they properly
represented their group of stakeholders. To avoid Howthorne effect [15], attitudes
towards the company process baseline were collected from subjects and taken into
account during data analysis. It was also pointed out to subjects that no “correct”
answers existed, and that it was important that their answers correctly reflected their
view. One confounding factor that may have affected the internal validity of the study
is the close involvement of the research team with the product line analysis team. We
do however judge this risk to be minor since the domain analysis team performed the
actual modeling themselves and the mentoring activity mainly consisted of discussion
meetings where possible problems were raised and discussed. To minimize threats to
the study’s external validity, the case study was conducted in the target domain of
extremely long-lived software intensive systems and the pilot project was selected to
be of typical size and complexity for the organization [11]. To minimize threats to the
study’s conclusion validity, results were triangulated by collecting data with four
different methods from several different sources. Furthermore, results were discussed
with the teams to assure that their opinions were represented correctly [18].

4.4 Results

Document examination indicated that the team understood and was able to apply all
notations used after only the four hour introduction to the approach, even tough they
had no earlier experience of feature modeling.

Participant observation revealed two initial problems applying PLUSS. During the
first brainstorming session, the domain engineering team misused the feature model to
“invent” variability that would force a “beautiful implementation”, instead of focusing
on creating a reusable requirements model. This problem was however resolved when
the issue was discussed at the first mentoring meeting. The second problem regarded
maintaining correct abstraction level. Even tough the team was to model only a
certain subsystem (VIS), sometimes also system level functions appeared in the
models. This problem was however resolved when the research team introduced a
system context diagram [13] in the modeling process.

Questionnaires indicated that the product line analysis team gained a better
understanding of the domain during the modeling activity. The team felt that applying
PLUSS was an overall positive experience and that PLUSS has a number of positive
characteristics, for example its way of providing a total overview of the product
family and the possibility to maintain a common model for a whole family. A
problem pointed at in the open ended questions was that the domain analysis team felt

42 M. Eriksson, J. Börstler, and K. Borg

Same as RUP
Worse than RUP

Much worse than RUP

Better than RUP
Much better than RUP

Basis for design

Product lin
e overview

Reuse of other parts

Short te
rm product planning

Long term product planning

Useful
Not so useful

Not useful at all

Very useful
Extremely useful

Use Cases

Performing the activity

Feature models

Change Cases

Same as RUP
Worse than RUP

Much worse than RUP

Better than RUP
Much better than RUP

Basis for design

Product lin
e overview

Reuse of other parts

Short te
rm product planning

Long term product planning

Useful
Not so useful

Not useful at all

Very useful
Extremely useful

Use Cases

Performing the activity

Feature models

Change Cases

Fig. 6. Overview of questionnaire results, (a) usefulness of concepts / performing the modeling
and (b) usefulness of resulting models compared to the company baseline

that DOORS and Rose were not integrated well enough, and that this resulted in time
consuming manual synchronization of the models. However, as shown in Fig. 6,
questionnaires indicated that the PLUSS approach performed better than the company
baseline in the VIS context.

Interviews with product line analysts indicted that the PLUSS approach provides a
better overview of the product line. The team also believed that the approach will
improve the overall quality of the models and ease their maintenance. Experience of
clone-and-own reuse [1] of use cases in earlier projects had pointed out a maintenance
problem which they believed PLUSS addresses. They could not identify any
scalability problems with the approach. However, they did believe that for it to work
well, smart decisions from technical management regarding scooping and a strong
configuration management function is needed. Analysts believed the initial extra
investment related to applying the PLUSS approach would be returned in terms of
reduced modeling costs already in the second or third project applying the approach.

Interviews with product line designers indicted that notations used were easy to
understand and that the resulting models provided a good overview of dependencies
within the model. They also felt that the approach made models more coherent and
easier to find information in. They believed that the PLUSS approach will
significantly increase the quality of specifications and ease their maintenance.
Designers felt that change cases “might be good to keep in mind”, but a “probability
of implementation” attribute would increase their usefulness. Designers could not
identify any scalability problems with the approach. However, they did believe it to
be important that technical management try to keep the number of variants down.

Interviews with the product development team indicated that the PLUSS approach
offered product line mechanisms significantly stronger than anything the RUP has to
offer. They believed that PLUSS will significantly reduce the effort needed for
requirements analysis and that it has potential to largely reduce the amount of
specification work. The team could not identify any scalability problems with the
approach. They did however see a risk that the number of features might explode if
too much new functionality is added in each project. They therefore believed a strong
management function is needed keep the number of variants down. They also
identified a risk that adding one or a few new features might create a dependency
explosion in the feature graph, since the model is closely related to business rules.
This thought could however not be further elaborated or illustrated by the team. The
team also identified a need for obsolete management of features to prevent the feature

 The PLUSS Approach - Domain Modeling 43

tree from growing to infinity. The product development team believed the initial extra
investment related to applying the PLUSS approach would be returned in terms of
reduced modeling costs already in the second project applying the approach.

Interviews with the systems engineering team indicated that the notations used
were easy to understand also for personnel with a non-software background. They
liked the idea of a common model being a central source of information about a
domain. They also found the use of change cases to tag unimplemented functionally
very useful since it provides a good overview of what is new and what has been done
before. They believed that the resulting models would be a good tool for early cost
estimates and that the approach would encourage and produce high levels of reuse.
The systems engineering team could not identify any problems with PLUSS. They did
however see a risk with the whole concept domain modeling and requirements reuse.
They believed that it might cause an organization to loose its visions and thereby
cause products to stop evolving. Systems engineering also expressed a need for
stronger means to document design rationale. This was however not seen as a
problem with PLUSS, but as an important supplement to be further investigated.

Interviews with Technical Management indicate that the PLUSS approach provides
significantly stronger support for product planning than traditional RUP. Management
liked the fact that it is a use case driven approach, and the idea of a central source of
information about a domain. Management also felt that feature models provided a
good overview of the requirements space for the domain and that change cases
provided a good overview of the current delta. However, to further improve the utility
of change cases, management would like change cases to have attributes specifying
planed platform release supporting them. Management also believed that PLUSS
models could be a powerful means of communication towards other parts of the
organization. Management believed the initial extra investment related to applying the
PLUSS approach would be returned in terms of reduced modeling costs already in the
second project, assuming the domain engineering team was able to produce models of
required quality before the start of the second project.

5 Summary and Conclusions

We have described how a common use case model can be developed and maintained
for a whole family of products in PLUSS. We have also described how product use
case models can be generated from a family model by selecting features from a
feature model. The approach was applied and evaluated in an industrial case study in
the target domain. Triangulating on the collected case study data has led us to reject
the case study null hypothesis. We thereby draw conclusion that the PLUSS approach
performs better than modeling according to the styles and guidelines specified by the
RUP in the current industrial context. Results did however also indicate that for
PLUSS to be successfully applied, stronger configuration management and product
planning functions than traditionally found in RUP projects are needed. Furthermore,
results also pointed at a need for better tool support and stronger means to document
design rationale. We consider these areas to be important areas of future work.

44 M. Eriksson, J. Börstler, and K. Borg

References

1. Bosch, J.: Design & Use of Software Architectures, Addison-Wesley (2000)
2. Czarnecki K., Helsen S., Eisenecker U.: Staged Configuration Using Feature Models,

Proceedings of the Software Product Line Conference (SPLC 2004), LNCS 3154,
Springer-Verlag, (2004) 266-283.

3. Ecklund E., Delcambre L., Freiling M.: Change Cases - Use Cases that Identify Future
Requirements, Proceedings of OOPSLA’96, San Jose, Ca, October 6-10, (1996) 342-358.

4. Eriksson M., Börstler J., Borg K.: Marrying Features and Use Case for Product Line
Requirements Modeling of Embedded Systems, Proceedings of the Fourth Conference on
Software Engineering Research and Practice in Sweden SERPS’04, Institute of
Technology, UniTryck, Linköping University, Sweden (2004) 73-82

5. Fantechi A., Gnesi S., Lambi G., Nesti E.: A Methodology for the Derivation and
Verification of Use Cases for Product Lines, Proceedings of the International Conference
on Software Product Lines, Lecture Notes in Computer Science, Vol. 3154, Springer-
Verlag (2004) 255-265

6. Fey D., Fajta R., Boros A.: Feature Modeling: A Meta-model to enhance Usability and
Usefulness, Proceedings of the International Conference on Software Product Lines,
Lecture Notes in Computer Science, Vol. 2371, Springer-Verlag, (2002) 198-216.

7. Gomaa H.: Designing Software Product Lines with UML – From Use Cases to Pattern-
Based Software Architectures, Addison-Wesley (2004)

8. Griss M., Favaro J., d’Alessandro M.: Integrating Feature Modeling with the RSEB,
Proceedings of the Fifth International Conference on Software Reuse, Vancouver, BC,
Canada, (1998) 76-85.

9. Jacobson I., Griss M., Jonsson P.: Software Reuse – Architecture, Process and
Organization for Business success, Addison-Wesley (1997)

10. Kang K. Cohen S., Hess J., Novak W., Peterson A.: Feature Oriented Domain Analysis
(FODA) Feasibility Study, Technical Report CMU/SEI-90-TR-021, Software Engineering
Institue, Carnegie Mellon University, Pittsburgh, PA (1990)

11. Kitchenham B., Pickard L., Pfleeger S.: Case Studies for Method and Tool Evaluation,
IEEE Software, Vol. 12 Nr. 45 (1995) 52-62

12. Kruchten P.: The Rational Unified Process - An Introduction, Second Edition, Addison-
Wesley (2000)

13. Lykins H., Friedenthal S, Meilich A.: Adapting UML for an Object Oriented Sysyems
Engineering Method (OOSEM), Proceedings of the 10’Th International INCOSE
Symposium (2000)

14. Mannion M., Lewis O., Kaindl H., Montroni G., Wheadon J.: Representing Requirements
on Generic Software in an Application Family Model, Proceedings of the International
Conference on Software Reuse ICSR-6 (2000) 153-196.

15. Mayo E.: The human problems of an industrial civilization, New York: MacMillan (1933)
16. Von der Ma en T., Lichter H.: Modeling Variability by UML Use Case Diagrams,

Proceedings of the International Workshop on Requirements Engineering for Product
Lines (2002) 19-25

17. Rational Software: The Rational Unified Process for Systems Engineering Whitepaper,
Ver. 1.1, Available at: http://www.rational.com/media/whitepapers/TP165.pdf, (2003)

18. Seaman C.: Qualitative Methods in Empirical Studies of Software Engineering, IEEE
Transactions on Software Engineering, July/August (1999) 557-572

19. OMG: Unified Modeling Language Version 2.0, Available at: http://www.uml.org (2005)

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 45 – 56, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Feature-Oriented Re-engineering of Legacy Systems
into Product Line Assets – a Case Study

Kyo Chul Kang, Moonzoo Kim, Jaejoon Lee, and Byungkil Kim

Software Engineering Lab. Computer Science and Engineering Dept.,
Pohang University of Science and Technology, South Korea

{kck, moonzoo, gibman, dayfly}@postech.ac.kr
http://selab.postech.ac.kr/

Abstract. Home service robots have a wide range of potential applications,
such as home security, patient caring, cleaning, etc. The services provided by
the robots in each application area are being defined as markets are formed and,
therefore, they change constantly. Thus, robot applications need to evolve both
quickly and flexibly adopting frequently changing requirements. This makes
software product line framework ideal for the domain of home service robots.
Unfortunately, however, robot manufacturers often focus on developing techni-
cal components (e.g., vision recognizer and speech processor) and then attempt
to develop robots by integrating these components in an ad-hoc way. This prac-
tice produces robot applications that are hard to re-use and evolve when re-
quirements change. We believe that re-engineering legacy robot applications
into product line assets can significantly enhance reusability and evolvability.

In this paper, we present our experience of re-engineering legacy home ser-
vice robot applications into product line assets through feature modeling and
analysis. First, through reverse engineering, we recovered architectures and
components of the legacy applications. Second, based on the recovered infor-
mation and domain knowledge, we reconstructed a feature model for the legacy
applications. Anticipating changes in business opportunities or technologies, we
restructured and refined the feature model to produce a feature model for the
product line. Finally, based on the refined feature model and engineering prin-
ciples we adopted for asset development, we designed a new architecture and
components for robot applications.

1 Introduction

Home service robots utilize various technology-intensive components such as speech
recognizers and vision processors to offer services. As markets for home service ro-
bots are still being formed, however, these technical components undergo frequent
changes and new services are added and/or existing services are often removed or
updated to address changing needs of the users. To compete in this rapidly changing
market, robot manufacturers should be able to evolve robot products quickly with a
minimal cost. The home service robot industry has strong needs for software devel-
opment framework with which applications can be evolved easily. This situation
makes software product line ideal for the home service robot industry.

46 K.C. Kang et al.

Due to limited development resources, robot developers focused on technology inten-
sive components at an early stage of product development without careful consideration
of how software applications would evolve with changing requirements. Without a fore-
thought architectural consideration, initial products have often been developed by inte-
grating technology components in an ad-hoc way. Consequently, products suffered from
feature interaction problems and maintenance of applications became costly. Re-
engineering legacy robot applications into product line assets can enhance the competi-
tive power of robot products by both decreasing development cost and increasing flexi-
bility of robot applications. Jean-Marc at al [1][2][6] suggest an architecture-centric re-
engineering process for initial product line asset recovery. This approach emphasizes a
software architecture as a key to recovery of domain concept and relations. Bosch at al
[3][4] consider a feature model as a core for creating product line assets from legacy
products. These studies, however, do not suggest concrete design principles or guidelines
for creating product line assets with adaptability.

In this paper, we describe our experience of re-engineering home service robot ap-
plications into product line assets via a feature-oriented methodology that is based on
concrete principles and guidelines [5]. First, we extracted components and architec-
tural information from legacy robot applications [7]. Second, based on the recovered
information and domain knowledge, we discovered and modeled features of the robot
applications. Anticipating future evolution of applications by considering potential
business opportunities and technology changes, we refined the feature model adding
additional features and variability information [8]. Finally, based on the refined fea-
ture model and three engineering principles we adopted to develop evolvable assets
[9], we designed a new architecture and components for the product line. This re-
engineering approach is depicted in Fig.1.

Fig. 1. Overview of re-engineering process

Sect. 2 gives an overview of home service robots. Sect. 3 explains the process of
recovering architectural information from legacy applications. Sect. 4 describes re-
covery and refinement of a feature model from the legacy applications. Sect. 5 illus-
trates redesign of an architecture and asset components based on the refined feature
model using the engineering principles we adopted. Sect. 6 validates the re-
engineered product line assets. Finally, Sect. 7 describes the lessons learned from this
project and Sect. 8 summarizes the paper and suggests future works.

 Feature-Oriented Re-engineering of Legacy Systems into Product Line Assets 47

2 Background on the Home Service Robot (HSR)

In this section, we briefly overview services of the home service robot (HSR) whose
applications we re-engineered into product line assets. HSR is developed for daily
home services such as home surveillance, cleaning, etc. From the HSR manufacturer,
we received high level specifications of required HSR services such as “Call and
Come” (locate and come to the user), “User Following” (continuously follow the
user), “Security Monitoring” (home surveillance), and “Tele-presence” (control HSR
remotely), etc. 1 In addition, we received two separate HSR applications each of
which implements the “Call and Come” service and “User Following” service respec-
tively. Of these primary services of HSR, we explain “Call and Come” and “User
Following" services in detail.

* Call and Come (CC)

 This service first analyzes audio data sampled from microphones attached to the
surface of the robot and detects predefined sound patterns (e.g., hand clap or voice
command). Currently, there are two commands “come” and “stop”. Once a “come”
command is recognized, the robot detects the direction of a sound source. Then, the
robot rotates to the direction of a sound source and tries to recognize a human face
by analyzing video data captured through the front camera. If the caller's face is de-
tected, the robot moves forward until it reaches within one meter from the caller
(distance from the caller is measured by a structured light sensor). A “Stop” com-
mand simply makes the robot stop. If the following operation such as command
recognition, sound source detection, or face recognition fails, CC resets to an initial
state and waits for a new command.

* User Following (UF)

 The robot uses a front camera and a structured light sensor to locate the user. Once
UF is triggered, the robot constantly checks the vision data and sensor data from
the structured light sensor to locate the user. The robot keeps following the user
within one meter range. If the robot misses the user, the robot notifies the user by
generating an audio message and UF terminates. The user may give a “come”
command to let the robot recognize the user and restart UF.

Based on the given specifications and information extracted from the two legacy
applications, we recovered a preliminary feature model covering both applications.
The legacy HSR applications hard-coded most features without considering variation
points for future extension or refinement. For example, the legacy HSR application
has features such as “Face Detection Method” and “Object Recognition with SL” for
user detection and user tracking. These features, however, do not have variations but
have fixed implementations. For example, “Face Detection Method” is implemented
based on “Color-based” method, not allowing other detection techniques to be
adopted. For more detailed of features supported by the legacy HSR applications, see
Fig. 5.

1 For more information on HSR services and hardware, see [9].

48 K.C. Kang et al.

3 Information Extraction from Legacy HSR Application

In this section, we explain how architectural information was extracted from the leg-
acy applications and what potential problems were with the architecture.

3.1 Reverse Engineering Process

Fig. 2 describes the process of recovering a conceptual architecture as well as a proc-
ess architecture from legacy applications.

1. From legacy applications, we obtain object relationship diagrams (see Fig. 3)
mechanically, i.e., using the Rational-Rose2 tool.

2. Based on the extracted object relationship diagram, we determine objects which
constitute services (e.g., CC and UF services). This step needs heuristics based
on domain knowledge and additional data flow analysis. Then, we identify op-
erational units that the service consists of, by analyzing method invocations and
data flows. By assigning operational units into architectural components, we re-
cover a conceptual architecture.

3. From the object relationship diagram and identified service/operational units, we
determine which objects (i.e. active objects) take initiative of invoking other ob-
jects’ operations by creating processes/threads. Then, we identify interactions be-
tween active objects via a control flow analysis. By capturing these interactions
between active objects, we recover a process architecture which shows assign-
ment of software components to processes or thread synchronization relations.

How this process was applied to CC is explained in the following subsections.

Fig. 2. Recovery of conceptual architecture and process architecture

3.2 Recovery of Operational Units

Fig. 3 illustrates recovery of operational units from the object relationship diagram for
CC. Using functional cohesion as a criterion, we classified operational units into three
categories – sensor (input), controller (coordination), and actuator (output). Using
these categories as a guide, we identified five operational units as follows.

2 Rational-Rose is a trademark of IBM corporation.

 Feature-Oriented Re-engineering of Legacy Systems into Product Line Assets 49

Fig. 3. Recovery of operational units for CC

- sensor units: “Face Detection”, “Clap Recognition”, and “SL Sensing”
- a controller unit: “CC Command Controller”
- an actuator unit: “Actuator Controller”

3.3 Recovery of Conceptual Architecture and Process Architecture

Through an additional data flow analysis, the identified operational units are config-
ured into the conceptual architecture depicted in the Fig. 4.a). This conceptual archi-
tecture is hardly adequate for multi-service robots because all service units (e.g. CC

Fig. 4. Recovered conceptual architecture and process architecture

50 K.C. Kang et al.

Command Controller) can access and control “Actuator Controller” directly. This
architecture can allow services interfere with each other in an indirect way.

To recover a process architecture, we identified three active objects from the object
relationship diagram depicted in Fig. 3 by detecting process creation code –
CEXE_dialogDlg, CRMainControl, and CSL. These objects create three proc-
esses “Motion Controller (MC)” (consisting of “CC Command Controller”, “Face
Detection”, and “Actuator Controller” operational units), “Clap Recognition (CR)”
(“Clap Recognition” unit) and “SL Sensing (SLS)” (“Structured Light Sensing” unit)
respectively as depicted in Fig.4.b). MC receives data such as the distance to an ob-
stacle and the direction of clap sound from SLS and CR respectively. MC determines
the moving direction based on these data. Thus, without a smart control logic in MC,
feature interaction between CR and SLS may happen because both processes can
control MC at the same time.

4 Refined Feature Model of HSR Product Line

In this section, we describe a refined feature model of HSR. First, we extracted fea-
tures from the legacy application implementing CC service, which are indicated in
bold font in Fig. 5. Newly added features and refined features are indicated in italic
font in Fig. 5. The detailed explanation of the refined feature model is as follows.

First, we added new services targeted for different markets. For example, HSR
supporting only CC service can be produced for a low-end market as a delivery robot,
while HSR with CC, UF, Tele-presence, and Security Monitoring services can be

Fig. 5. Feature model for SH100 including CC service

 Feature-Oriented Re-engineering of Legacy Systems into Product Line Assets 51

produced for a high-end market as an intelligent home agent. Based on the legacy
feature model for the CC service, we created a new model by adding features for new
services, operations, and domain technologies, and also dependency relationships
between features. Newly added services require operational features not included in
the original feature model. For example, newly added UF service needs to follow
user’s footsteps (“Footstep Tracking”). In addition, to follow the user smoothly, UF
service controls HSR in a velocity oriented way via “Control Velocity Value” (e.g. set
the velocity of left wheel as 1 m/s, and the right wheel as 0.8 m/s). Furthermore, a
new operational feature may require new domain technologies. For example, “Foot-
step Tracking” requires “Shape Matching” in order to recognize user’s footsteps.

Second, we refined the feature model by including optional features to accommo-
date anticipated changes. For example, in the legacy CC application, “Face Detection
Method” used only a color-based detection algorithm. We refined this feature by
adding an optional feature “Shape-based” for its improved accuracy adequate for
high-end markets, but at the cost of high computational resources.

Third, due to the advances of technologies, some features considered as important
capabilities can simply be supported by the operational environment as SoC (System
On Chip) or by OS. In the legacy CC application, “Collision Avoidance (CA)” feature
was implemented in software and placed in the Capability Layer. We moved CA to
the Operation Environment Layer because of CA SoCs available in the market.

5 New Architecture Design of HSR

One of the quality attributes with the new architecture is its flexibility in adding, re-
moving, and/or replacing components as products evolve. For this purpose, we
adopted C2 architectural style [10] for its substitutability of components. Also, we
enforced 1:N mapping from features to components whenever possible for easy inclu-
sion/exclusion of features into/from products. Furthermore, through an analysis of
legacy applications [11] and the refined feature model in Fig. 5, we decided to adopt
three engineering principles in redesigning the architecture of HSR (for details on
these principles, see [9]).

First, the legacy architecture intermixed control components with computational
components, which caused difficulty in analyzing behaviors of applications. There-
fore, we proposed the first principle – separation of control aspects from computa-
tional aspects. By separating the control plane which consists of control components
from the data plane with computational components, we could separate data flows
from control flows, thus making it possible to visualize and analyze behaviors of the
system. As a consequence, addition/removal of components becomes easier because
responsibilities of each component become clear.

Second, we aimed to minimize ripple effects caused when services are added or
removed - simple integration of new services, without consideration of how features
should be related with each other, has easily led to feature interaction problems. The
legacy architecture did not provide careful coordination among service components,
thus resulted in feature interaction problems when a new service was added. To ad-
dress such problems, we proposed the second principle - separation of global behav-
iors from local behaviors. Service components are separated to be executed locally,

52 K.C. Kang et al.

i.e., independently from other service components. Therefore, effects from addi-
tion/removal of components to other components are localized, which helps imple-
menting variation points. The coordination responsibility among different service
components is assigned to a special component called Mode Manager which controls
global system behavior such as interaction policies between service features.

Finally, we found that there existed hierarchy between some variable features. For
example, “Object Recognition with SL” feature has three sub-features – “Image
Grab”, “Obstacle Reflection”, and “Shape Matching” (see Fig. 5). “Image Grab”
simply captures SL images whereas “Obstacle Reflection” detects objects in front of
HSR by analyzing the SL images obtained by “Image Grab”. “Shape Matching”
works more sophisticatedly by analyzing object images obtained from “Obstacle
Reflection” to recognize user’s legs (e.g., footsteps). Therefore, we made three com-
ponent layers corresponding to these variable features according to the third principle
- layering in accordance with data refinement hierarchy. Different services may re-
quest operations from different layers of a single component. By adopting a layered
architecture for computational components, addition/removal of variable features in
the Domain Technology Layer could be implemented cleanly because the layered
architecture provides well-defined interfaces between layers.

Fig. 6. New architecture for HSR

Fig.6 illustrates the new architecture designed according to the three re-engineering
principles.3 First, we identified four control components: CC, UF, Tele-presence, and
Security Monitoring. And we identified five computational components: Navigation,
Structured Light, User Interface, Vision Manager, and Audio Manager. Mode Man-
ager was specified to control global behavior of HSR by receiving all up-stream
events and managing the control components. Most computational components read
raw input data from sensors and process them to generate outputs to other compo-
nents. The generated outputs are transferred to the control component through a data
connector/bus.

3 This architecture reflects typical software architecture of embedded systems (especially appli-

cation layer) such as network gateways or vehicle controllers which distinguish control data
from computational data.

 Feature-Oriented Re-engineering of Legacy Systems into Product Line Assets 53

Fig. 7. A design object model and component specification

Based on the new architecture, we designed components with a macro-processing
mechanism (to incorporate variable features) [12]. In addition, we extracted sub-
components from the existing code through refactoring techniques [13]. Fig. 7 illustrates
the structured light component. The left part of Fig.7 shows a layered template for com-
putational components and the structured light component instantiated from the template.
The legacy structured light component was implemented as a long procedural function.
Thus, we extracted reusable portion of the function into “Footstep Matcher”, “Obstacle
Analyzer”, and “Light Image Grabber” components. These layered components were
instantiated for the selected features using a component specification [14].

Lines 1-4 of the right part of Fig. 7 specify instantiation of LayeredStruc-
tureComponent implementing “Object Recognition with SL” feature (with vari-
able feature “ShapeMatching”) from StrcutredLightComponent. Lines 5-12
describe how structured light and vision manager are instantiated. Especially, lines 9-
11 specify that if a variant feature “Shape Matching” is selected, the instantiated com-
ponent will have “Footstep Matcher” as its topmost layer; otherwise, “Obstacle Ana-
lyzer” as its topmost layer. Lines 13-20 illustrate how a service is selected for the
service requestor. For example, at line 17, if UF requests service of structured light
components, the service of topmost layer (i.e. “Footstep Matcher”) should be pro-
vided (with an assumption that “Footstep Matcher” feature is enabled). Lines 21-24
show a service chain between layers.

6 Validation of Product Line Assets

We have generated HSR applications using re-engineered product line assets. First,
without difficulty, we have instantiated two applications supporting CC and UF re-

54 K.C. Kang et al.

spectively by selecting features required by the services. We could check that new
applications worked successfully according to the given service specifications. For
these two applications, Mode Manager does not enforce control on global behaviors
because the HSR applications run only a single service.

Then, we have instantiated an application supporting both CC and UF services.
The CC and UF services share computational components. Concurrent accesses to the
computational components except “Navigation” did not cause any feature interaction
problem between the CC and UF services; operations requested to the computational
components by CC and UF are mainly reading analyzed data, not updating data. In
addition, the layers accessed by the two services are different. For example, CC ac-
cesses the “Obstacle Analyzer” layer while UF accesses the “Footstep Matcher” layer
of the “Structured Light” component. Operations requested by UF and CC to ”Navi-
gation”, however, are mostly for controlling actuators. Thus, to prevent a feature
interaction problem, Mode Manager coordinated CC and UF using a priority scheme.
Code modification required for priority enforcement was not obstructive because CC
and UF components except Mode Manager did not need to be modified. Therefore,
we have shown that the re-engineered product line assets for HSR are suitable for
creating applications of the home service robot.

7 Lessons Learned

In this section, we describe lessons we have learned from this re-engineering project.

7.1 Importance of Pre-planned Asset Integration

Hardware-oriented or technology-oriented organizations usually consider product
development/instantiation as a last-minute task that can be achieved by simply inte-
grating technology-intensive components. Without a fore-thought architectural con-
sideration and component integration strategies, however, products often suffered
from feature interaction problems and maintenance of applications became costly.

In this case study, we could alleviate these difficulties by providing an architectural
framework based on the refined feature model and engineering principles we adopted for
asset development. In addition, the explicit mapping between features and architectural
components made the inclusion/exclusion of features visible. We also observed that a
feature model could play a central role in identifying relationship between pre-existing
features and new features. For example, for the addition of "User Following" feature, the
feature model in Fig.5 shows additional new features such as “Footstep Tracking” and
their relationships with the features of the legacy applications.

Based on the feature analysis results, we could determine component integration
scheme. For the integration of the "Footstep Tracking" feature, for instance, the com-
ponent that implemented "User Tacking" was modified to accommodate the "Footstep
Tracking" feature and the modified component could confine the variations between
"Distance Tracking" and "Footstep Tracking" by providing a common interface.

 Feature-Oriented Re-engineering of Legacy Systems into Product Line Assets 55

7.2 Benefit of a Feature Model in Architecture Layering

Through the case study, we found that the feature model provided a useful informa-
tion for identifying layers in the component architecture. The feature model has fea-
tures representing different levels of computation. Especially variation points show
services of different levels. For example, “Shape Matching”, “Obstacle Reflection”,
and “Image Grab” features (see Fig. 5) are used for UF, CC, and Tele-presence ser-
vices respectively. These features altogether represent computational hierarchy, i.e.,
“Shape Matching” uses result from “Obstacle Reflection” and “Obstacle Reflection”
from “Image Grab”. Accordingly, these features are implemented as a “Footstep
Matcher” layer, an “Obstacle Analyzer” layer, and a “Light Image Grabber” layer of
the structured light component (see Fig. 7). Similarly, we found that “Face Detection
Method” feature also had a hierarchy among its sub-features and, thus, corresponding
“Vision Manager” component was built as a layered structure. Therefore, layering
based on the feature model was very helpful for creating component architecture for
product line engineering.

7.3 Analysis Aid of Process Architecture

Process architecture can help finding possible feature interactions among concur-
rent processes. For example, from the process architecture in Fig. 4.b), we could
guess that MC might suffer feature interaction problems due to concurrent input
data from CR and SLS (see Sect. 3.3). Furthermore, process architecture also helps
analyzing the legacy application design. For example, UF service implemented in
the legacy application does not use the front camera, not following the UF service
specification (see Sect. 2). We could find the reason based on the process architec-
ture. In order to utilize the front camera for UF, the front camera should capture
images continuously to detect user’s face. The “Face Detection” operational unit in
the legacy application, however, was a sequential component of MC, not a separate
process running concurrently (see Fig. 4.b)). That was the reason why legacy UF
application did not use the front camera.

8 Conclusion

In this paper, we describe re-engineering legacy home service robot applications
into product line assets via a feature-oriented method. We believe that feature-
oriented re-engineering approach can help robot manufacturers to take advantage
of product line framework – decrease in development cost and increase in applica-
tion flexibility.

As a future work, based on the re-engineered HSR product assets, we plan to study
evolution of HSR product line assets and evaluate both weaknesses and strengths of
the current product line assets. Secondly, we will study and develop guidelines for
evaluating product line assets.

56 K.C. Kang et al.

References

1. DeBaud, J.M., Girard, J.F.: The relationship between the Product Line Development Entry
Points and Reengineering, 2nd International Workshop on Development and Evolution of
Software Architectures for Product Families, LNCS 1492, pp. 132-139, (1998)

2. Bayer, J., Girard, J.F, Wuerthner, M., DeBaud, J.M., Apel, M.: Transitioning Legacy As-
sets to a Product Line Architecture, 7th European Software Engineering Conference
(ESEC/FSE'99), LNCS-1687, pages 446-463, (1999)

3. Bosch, J., Ran, A.: Evolution of Software Product Families, Software Architectures for
Product Families: International Workshop(IW-SAPF-3), LNCS 1952, pp. 168-183, (2000)

4. Maccari, A., Riva, C.: Architectural Evolution of Legacy Product Families, Software
Product Family Engineering: 4th International Workshop (PFE-4 2001), LNCS 2290, pp
64-69, (2002)

5. Kang, K., Lee, J., Donohoe, P.: Feature Oriented Product Line Engineering, IEEE Soft-
ware, 19(4), July/August, pp. 58-65, (2002)

6. Eixelsberger, W., Kalan, M., Ogris, M., Beckman, H., Bellay, B., Gall, H.: Recovery of
Architectural Structure: A Case Study, 2nd International ESPRIT ARES Workshop on
Development and Evolution of Software Architectures for Product Families LNCS Vol.
1429. Springer-Verlag, Berlin Heidelberg New York (2002)

7. Bergey, J., O’Brien, L., Smith, D.: Option Analysis for Reengineering (OAR): A Method
for Mining Legacy Assets (CMU/SEI-2001-TN-013). Pittsburgh, PA:Software Engineer-
ing Institute, Carnegie Mellon University (2001)

8. Lee, K., Kang, K., Lee, J.: Concepts and Guidelines of Feature Modeling for Product
LineSoftware Engineering. In: Gacek, C. (eds.): Software Reuse: Methods, Techniques,
and Tools.Lecture Notes in Computer Science, Vol. 2319. Springer-Verlag, Berlin Heidel-
berg

9. Kim, M., Lee, J., Kang, K., Hong, Y., Bang., S.: Re-engineering Software Architecture of
Home Service Robots: A Case Study, International Conference on Software Engineering,
Missouri, USA, pp.505-513, (2005)

10. Medvidovic, N., Taylor, R. N.: Exploiting architectural style to develop a family of appli-
cations, Software Engineering. IEE Proceeding, Vol. 144, No 5-6. October/December
(1997)

11. Lago, P., Vliet, H.: Observations from the Recovery of a Software Product Family, Soft-
ware Product Line Conference 2004, LNCS Vol 3154 Springer-Verlag, Berlin Heidelberg
New York (2004)

12. Basset, P.G.: Framing Software Reuse: Lessons from the Real World. Prentice Hall, Your-
don Press (1997)

13. Fowler, M., Beck, K., Brant.,J., Opdyke, W., Roberts, D.: Refactoring: Improving the De-
sign of Existing Code, Addison-Wesley (2000)

14. Bosch, J., Hogstrom, M.: Product Instantiation in Software Product Lines: A Case Study.
Second International Symposium on Generative and Component-Based Software Engi-
neering LNCS 2177 (2001)

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 57 – 69, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Reuse without Compromising Performance: Industrial
Experience from RPG Software Product Line for

Mobile Devices

Weishan Zhang1 and Stan Jarzabek2

1 School of Software Engineering, Tongji University,
No. 4800 Cao’an Highway, Shanghai, 201804, China

{zhangws}@mail.tongji.edu.cn
2 Department of Computer Science, School of Computing,

3 science drive 2, 117543, Singapore
{stan}@comp.nus.edu.sg

Abstract. It is often believed that reusable solutions, being generic, must neces-
sarily compromise performance. In this paper, we consider a family of Role-
Playing Games (RPGs). We analyzed similarities and differences among four
RPGs. By applying a reuse technique of XVCL, we built an RPG product line
architecture (RPG-PLA) from which we could derive any of the four RPGs. We
built into the RPG-PLA a number of performance optimization strategies that
could benefit any of the four (and possibly other similar) RPGs. By comparing
the original vs. the new RPGs derived from the RPG-PLA, we demonstrated
that reuse allowed us to achieve improved performance, both speed and mem-
ory utilization, as compared to each game developed individually. At the same
time, our solution facilitated rapid development of new games, for new mobile
devices, as well as ease of evolving with new features the RPG-PLA and cus-
tom games already in use.

1 Introduction

Mobile games have become an important trend in the mobile phone industry. Role-
Playing Game (RPG) is one kind of a mobile game suitable for mobile devices and
attractive to players. With an RPG, the players take the roles of fictional characters
and participate in an interactive story. All RPGs share basic Role-Playing concepts
and differ in certain functional requirements. RPGs are further differentiated by the
properties of a specific mobile device platform on which they run, and which affect
RPG’s design and implementation. This includes high end mobile devices with
640x200 colorful screen and up to 80M memory versus lower end devices with
100x80 mono display and less than 100kb memory; the new mobile devices J2ME
MIDP2.0 compliant versus the old ones MIDP1.0 enabled. RPGs must perform well
across all these different devices.

Given the above similarities and differences, RPGs form an interesting and poten-
tially useful product line [2][4]. However, to be attractive and practical, reuse in mo-
bile device, and also in embedded software sectors, must not compromise the per-
formance. This problem has been frequently mentioned in many sources [5], but we

58 W. Zhang and S. Jarzabek

have not come across many examples of successful solutions. On contrary, in our
discussions with embedded software vendors, it has been often mentioned that reus-
able design, being generic, may need compromise performance.

In this paper, we report on a mobile device industrial project in which product line
approach not only achieved development/maintenance productivity gains, but also
enhanced software performance. We applied extractive approach [9] combined with
generalizations revealed by domain analysis, to convert four RPGs into an RPG prod-
uct line architecture (RPG-PLA) from which we could derive the four RPGs, as well
as more similar ones. Upon exanimation of the original RPGs, we found certain short-
comings in their design. We also found that certain optimizations used in one RPG
could be also useful in other RPGs. We encoded best design solutions we learned
from four RPGs into the RPG product line architecture (RPG-PLA). From there, we
could propagate common optimization strategies to all the RPGs built based on the
RPG-PLA. We used XVCL [18] to build and manage the RPG-PLA.

The rest of the paper is structured as follows: In the next two sections, we introduce
Dig Gem as an example of an RPG and then analyze the RPG domain. Section 4 gives
an overview of the RPG product line experiment. In Section 5, we analyze design of
the four original RPGs. Section 6 discusses optimization strategies for RPG software.
Then we present the building of the RPG-PLA incorporated optimization strategies.
In section 8, we show the derivation of specific RPGs from the RPG-PLA. Section 9
presents the discussion of the experiment results. Related work and concluding re-
marks end the paper.

2 Dig Gem - An Example of an RPG

In Dig Gem, a hero digs around the map to look for gems. Scores for
finding different gems are added up and listed (Figure 1). A hero faces
various traps (e.g., bombs) that obstruct his efforts. The elapsed and
remaining time for the game is displayed on a bar on top of the screen.
The main concepts behind the Dig Gem are depicted in Figure 2.

Fig. 2. Conceptual class diagram of Dig Gem Fig. 3. Concepts in the RPG domain

3 An RPG Domain

RPGs come in many different incarnations and can be very complex. Here, for start,
we consider Dig Gem introduced in Section 2; Climb where the hero walks and jumps
on the floor to avoid falling down to the mountain; Feeding where the hero tries to

Fig. 1. A snapshot
of Dig Gem

 Industrial Experience from RPG Software Product Line for Mobile Devices 59

pick up as much food as possible; and Hunt, where the hero shoots animals and
monsters with arrows. Figure 3 shows the generic concepts in RPG domain.

3.1 Commonalities in the Mobile RPG Domain

The four RPGs share the following commonalities:

1. They all use MIDlet application model [7] of the J2ME platform.
2. The execution scenario and its control flow for all the games is similar:

a) There is a main class that extends MIDlet (for example Dig class in Figure 2), as
required by MIDP. In the constructor of the main class, an instance of the game
Canvas (for example DigCanvas) is created. Using a getInitialScreen() method, this
instance creates a game starting screen object (for example DigScreen).

b) In the starting screen, all initialization data are loaded, including map, sound,
etc.

3. The heroes of the game move according to a predefined pattern, which differs from
game to game.

4. The game scores are displayed as the game goes on.

3.2 Variants in the RPG Domain

The following are some of the variant features in the RPG domain:

1. The details of game stories are different from one RPG to another. In particular:
a) Initial position of the hero.
b) The scenarios for hero’s lives (e.g., the number of lives the hero can have) de-
pend on the game, hero’s actions and the underlying context.

c) The number and types of heroes in the game.
d) Types of weapons, number of bullets, etc.

2. The hero’s movement style and mode (the hero may go up and down, or right and
left; jump or even fly).

3. Different games may use different algorithms for movement.
4. Some of the games need time manager to count the time elapsed in order to man-

age the time-related behavior.
5. The show time and time spent before the splash screen disappears; Different

splash images can be used from game to game; An option to skip the splash
screen.

6. User interface variants are most profound and plentiful. They include menus,
energy bars, map styles, and position and size of widgets.

Fig. 4. A feature diagram for the mobile RPG domain

60 W. Zhang and S. Jarzabek

Figure 4 depicts common and variant features in the RPG domain, as a feature dia-
gram [8]. Variant features are often dependent on each other, in the sense that one
variant can be a prerequisite for other variants. A legal configuration of variants is
any variant selection that can appear in a specific product line member.

4 An Overview of the Experiment

We studied four RPGs developed for Motorola E680 by Sanjie Team in Meitong Co.
Ltd. The four developers in the team had a good grasp of the RPG domain, platform
characteristics, and object-oriented program design techniques. First, we analyzed the
design of RPGs in terms of quality metrics, design solutions and optimization strate-
gies used in them. Then, we designed a “generic RPG”, that is, an RPG product line
architecture, that included design and optimization strategies that could benefit any of
the four games, and possibly similar games to be developed in the future.

We started with Dig Gem and applied a combination of extractive and pro-active
approaches to design and evolve the RPG-PLA [5][9]. Our strategy was a variant of
an incremental reengineering of existing system family into a product line developed
in our earlier experiment [17]. We could derive from the RPG-PLA four original
RPGs developed by Sanjie Team, as well as many similar ones. The steps involved in
the experiment are depicted in Figure 5.

Finally, we compared our reuse-based solution to the original one from the point of
view of both the development/maintenance productivity and performance.

We designed the RPG-PLA with XVCL [18], a static meta-programming technique
to create parameterized, generic meta-components. Meta-components form a hierar-
chical structure, called an x-framework in XVCL jargon, which, in the context of the
RPG project, is an implementation of a product line architecture concept. The XVCL
Processor synthesizes custom programs, members of the product line, based on speci-
fications of their required properties provided in a special, top-most meta-component,
called SPC. In our experiment, the process of applying XVCL to produce product line
members, (i.e. RPGs) from the RPG-PLA is depicted in Figure 6.

Fig. 5. Steps leading to an RPGs product line Fig. 6. Project application of XVCL

5 Evaluation of the Original RPGs

We evaluated the quality of the existing RPGs using typical OO metrics [3][10], as
shown in Table 1.

Evaluate the original
design

Finding optimization
strategies

Building an RPG-PLA

Deriving specific RPGs by
customizing the RPG-PLA

1

2

3

4

Customizing
and

Extending

XVCL Processor

templates

meta-
components

adapt

input output

SPC

…
TimeManager

Dig

Hero

DigScreen

DigCanvas

DigGem

TimeManager Hero

ClimbScreen

Climb

Climb

PRG-PLA

Legend meta-
component

component

ClimbCanvas

 Industrial Experience from RPG Software Product Line for Mobile Devices 61

Table 1. OO metrics used for evaluation

coupling inheritance inheritance based coupling complexity of the design polymor-
phism

• CBO - Coupling
Between Objects

• VOD -Violations of
Demeters Law

• FO – FanOut
• MIC-Method Invoca-

tion Coupling

• DOIH-
Depth of
Inheri-
tance
Hierarchy

• TRAp - Total Reuse from
Ancestors percentage

• TRAu –Total Reuse from
Ancestor unitary

• TRDp -Total Reuse in Descen-
dant percentage

• TRDu -Total Reuse in Descen-
dant unitary

• MSOO - Maximum Size of Opera-
tion

• MNOL - Maximum Number Of
Levels

• MNOP - Maximum Number Of
Parameters

• NOM - Number Of Members
• NORM - Number Of Remote

Methods

• NOOM
-
Number
Of
Over-
ridden
Methods

Table 2 and Table 3 show the summary of metrics-based quality analysis. Accord-
ing to commonly accepted thresholds (as indicated by the default value set in Borland
Together), we can see that on overall the design conforms to the norms, with the ex-
ception of the MSOO and NORM metrics which are below the recommended thresh-
olds (shown in italics in Table 2 and Table 3).

Table 2. OO metrics for game packages

Item CBO DOIH FO MIC MNOL MNOP MSOO NOM NOOM NORM TRAp TRAu TRDp TRDu VOD
hunt 27 3 20 18 6 5 19 52 7 68 27 100 0 0 10

feeding 14 2 10 8 3 2 13 32 7 37 9 80 0 0 4

dig 24 2 16 18 4 5 19 53 7 72 27 100 0 0 11

climb 18 2 12 8 6 4 31 38 7 60 11 80 0 0 6

Table 3. OO metrics for game Dig Gem

Item CBO DOIH FO MIC MNOL MNOP MSOO NOM NOOM NORM TRAp TRAu TRDp TRDu VOD
TimeManager 6 2 4 3 1 2 2 21 1 4 6 22 0 0 1

Menu 5 2 4 2 1 1 3 13 1 2 12 33 0 0 1

JumpProp 5 2 4 3 2 5 5 13 1 4 18 67 0 0 1

InfoBox 6 2 4 3 4 4 8 21 1 4 7 22 0 0 1

HighlightTile 6 2 4 3 2 5 5 6 1 4 27 100 0 0 2

Hero 5 2 0 3 1 1 2 4 2 10 9 100 0 0 3

FallGem 6 2 4 3 1 5 2 7 1 5 27 100 0 0 2

DigScreen 24 2 16 18 4 2 19 53 5 72 3 44 0 0 11

DigConst 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

DigCanvas 11 2 6 6 1 2 2 13 7 12 3 90 0 0 3

Dig 2 1 2 2 0 1 1 5 0 2 0 0 0 0 1

Cloud 5 2 4 2 4 3 6 8 1 4 27 100 0 0 1

6 Optimization Strategies for RPGs

An initial design is never perfect. This especially holds for applications developed
with multiple design goals in mind which is the case for the resource limited mobile
device software. Although developers of the four RPGs under our study were experi-
enced professionals, we found that there was a room for performance improvement in
their design. We list common problems and improvements below.
a. Remove the constant interface. There are some constant interfaces, each for

every game. Interfaces should be used solely for type definitions [11], therefore we
remove all constant interfaces for the game engine and all four games.

62 W. Zhang and S. Jarzabek

b. Change class members to local variables. For example, the following buffer size
is defined in class GameMedia: public final static int BUFFER_SIZE = 1024;

As this attribute is used only in method LoadData(), buffer size definition should
be moved and defined as a LoadData() local variable. Then, the memory can be re-
claimed after the execution of LoadData() completes.

c. Remove redundant inheritance relationships. In some cases, some classes that
had very little in common were related by inheritance. We removed this kind of
inheritance relationship along with unnecessary class members and methods.

d. Iterate loops down to zero. Comparing against zero is faster than comparing
against other numbers. For example, we changed loops like: for(int i = 0 ; i < 6 ; i
++) to faster for(int i = 5 ; i >=0 ; i--).

e. Remove unnecessary classes. We re-allocated functionalities so that some classes,
especially those with very few methods, could be removed.

f. Remove obsolete class methods. In some cases, we found never used class meth-
ods. For example in GameMedia class, there were two methods for loading data
from file or input stream, remaining from previous implementation, but never used
in the current implementation. We remove such obsolete methods.

g. Remove constant definitions. As we planned to use XVCL, in many cases we
could delegate constant management to the XVCL level. This helped us decrease
the heap size, as there was no need to define them in the code anymore.
The following are other optimizations that we applied:

h. Avoid slow string comparisons
i. Declare the method and variable final for faster access
j. Replace resizable Vectors with arrays, if possible
k. Return a null object instead of throwing exceptions wherever possible

We built the above strategies into an RPG-PLA so that they could be propagated to
all the RPGs.

7 Building an RPG Product Line Architecture

We applied a combination of extractive and pro-active approaches to design and
evolve the RPG-PLA [5][9], using experiences from our earlier project on incre-
mental reengineering of an existing system into a product line [17].

Design of the RPG-PLA started with a typical game – Dig Gem in our case. We
evaluated the impact of variant features on Dig Gem components. Some variants had
localized impact on one component only, but other variants had a wider impact on
many components. For example, the initial position of the hero only affects the Hero
component. But the number and types of heroes affect many components.

Components affected by variant features were typical candidates for meta-
components: Instead of having many similar components, each implementing some
combination of variant features, we designed a small number of generic meta-
components capable of producing components implementing any combination of
variant features, as required in some member of the RPG product line. For example,
Canvas components and MIDlet classes are quite similar across RPGs and all their
variant forms can be obtained from generic meta-components.

 Industrial Experience from RPG Software Product Line for Mobile Devices 63

Then, in iterations, we refined the RPG-PLA with new variant features, and ex-
tended its functionality, to support more RPGs.

7.1 Initial RPG-PL Based on Dig Gem

Figure 7 depicts meta-components forming
our first-cut RPG-PLA based on the Dig
Gem. Before addressing variant features re-
lated to other RPGs, we implemented optimi-
zations described in the Section 6 into the
RPG-PLA, with the intention to propagate
them to other games to-be-built based on he
RPG-PLA. Fig. 7. A first-cut RPG-PLA based on
 Dig Gem

Meta-variables and meta-expressions are the basic means for parameterization.

Meta-variables have global scope in the x-framework and their values are propagated
across the underneath meta-components. An important role of meta-variables is to
chain together modifications of multiple components (at multiple program points)
related to variant features of a product line. Parameterization also provides effective
means to fulfill some of the optimization strategies outlined in Section 6.

name :Hero.xvcl

set Hero = Hero

text

class @Hero extends Nlayer{

 public ?@Hero?(){

 setPosition(@HeroInitX, @HeroInitY);

while Using-items-in=LoopImageX

while Using-items-in=LoopImageY

iImg[@LoopImageX][@LoopImageY]=GameMedia.loadImage("/@GameName/@Hero@LoopImageX?@L

oopImageY?.png");

break MotionMode

ifdef Stand

case @Stand :

drawImage(iImg[2][2],this.getX(),this.getY(),Graphics.LEFT | Graphics.TOP);

 break;

……

while Using-items-in=MotionState

select option= MotionState

Stand while Using-items-in=MotionMode

 getMotion().addAction(@MotionMode, @Stand, new int[]{@Stand });

Walk while Using-items-in=MotionMode

 getMotion().addAction(@MotionMode,@Walk,new int[]{@Walk });

break MoreMethods

Fig. 8. Hero meta-component

Dig.spc

JumpproHighlightTitleFallGemHero

DigScreen

Adapt

Legend

Menu

TimeManagerImport
RepaintBackGround

Meta-component

CloudMIDlet

CommonAction

InfoboxCanvas

64 W. Zhang and S. Jarzabek

Consider the Hero meta-component (Figure 8) as an example. We removed all the
constant interfaces (strategy a) and other constants (strategy g), replacing them with
XVCL meta-variables. For example, hero’s initial position, originally defined in Dig-
Const interface, have been replaced with meta-variables HeroInitX and HeroInitY.
There were many other situations of removing constant definitions (yet another is
shown in the case clauses).

In Figure 8, multi-value meta-variables LoopImageX and LoopImageY are used
to initialize the image array that controls the movement of the hero. The <while>
command iterates over LoopImageX and LoopImageY. The n’th loop iteration uses
the n’th value of LoopImageX and LoopImageY to define the name of the corre-
sponding image file. For example, in the first iteration, meta-expression:
@Hero@LoopImageX?@LoopImageY?.png is computed as follows:

• Reference @Hero is replaced with meta-variable’s value “Hero”, yielding the
intermediate result: Hero@LoopImageX?@LoopImageY?.png.

• Reference @LoopImageX is replaced with “0” (first value of LoopImageX de-
fined in Dig.SPC), yielding the intermediate result Hero0?@LoopImageY?.png.

• Reference @LoopImageY is replaced with “0” (first value of LoopImageY de-
fined in Dig.SPC), yielding the final result Hero00.png, which is a required im-
age file.

In the original code, there were two sets of variables and methods to define the
moving speed. We applied strategy f to remove these and other duplicated methods.

We removed all the unnecessary inheritance relationships (strategy c). For exam-
ple, the TimeManager class is a subclass of Nlayer class, but in fact they share no
commons. Therefore this inheritance relationship is removed, the unnecessary class
members and method are also deleted.

Optimization strategies a, g working at XVCL level in which it can provide unique
optimization power which could not be achieved by other reuse technologies. Other
optimization strategies are embodied into the meta-components at the code level.

7.2 Subsequent Refinements of the RPG-PLA

In the next phase, we extended the initial RPG-PLA to accommodate features of the
remaining three games. In the Climb game, the hero can go to the Left and Right, and
can Jump on the floor to avoid falling down the mountain. Having examined the Hero
component in Dig Gem and Climb games, we found that the differences were pretty
minor, limited to handling extra movements of the hero in the Climb game. We added
more option values (Figure 9) to the <select>/<option> in Figure 8 after the <option>
value Walk. And an extra <ifdef> command (Figure 10) is also added after the
<break> named MoreMethods. The <ifdef> command is similar to cpp’s #ifdef: If
meta-variable Jumping is defined, then the enclosed part of the <ifdef> command is
processed, otherwise the enclosed part is ignored.

We applied similar procedures to extend our meta-components to cater for the re-
maining games, as well as to incorporate optimization strategies. Having addressed all
the variants for four RPGs, we obtained the RPG-PLA shown in Figure 11.

 Industrial Experience from RPG Software Product Line for Mobile Devices 65

Fig. 11. An optimized X-framework for the mobile RPG product line

8 Deriving RPGs by Customizing the RPG-PLA

By customizing and extending the RPG-PLA, we could derive from the RPG-PLA
any of the four RPGs and other similar games. (Term “derivation” is used in [5] to
mean reuse-based development of a product line member from the product line archi-
tecture). RPGs derived from the RPG-PLA could benefit from optimization strategies.

 To develop a new game, we first select the required variant features from the fea-
ture diagram (Figure 4). Then we write a suitable SPC and template to define

name :KongfuScreen.xvcl

set Hero = Hero

set HeroInitY=-50

set-multi LoopImageX=<0,1,2,3,4>

set-multi LoopImageY=<0,1,2,3>

adapt Hero.xvcl

insert MoreMethods

private boolean bMotiondo;

……

insert MotionMode

if(!bMotiondo) {

……

set Hero = Master

set HeroInitY=100

set-multi LoopImageX=<0,1,2,3,4>

adapt Hero.xvcl

insert MoreMethods

private boolean bFirstTouch;

……

insert MotionMode

if(!this.isTimeOver()) {

……

name : KongfuTemplate.xvcl

set-multi MotionMode=<3,7>

set Left= 3

set Right= 7

set-multi MotionState = <Stand, Walk >

set Stand = 1

set Walk = 2

……
adapt MIDlet.xvcl outfile=?@GameName?.java

outdir=games/@GameName
adapt ?@GameName?Screen.xvcl

outfile=?@GameName?Screen.java
outdir=games/@GameName

adapt Canvas.xvcl
outfile=?@GameName?Canvas.java
outdir=games/@GameName

Fig. 14. screenshot of the Kongfu game on A6288 Fig. 13. KongfuScreen meta-component

Jumping while Using-items-in=MotionMode

getMotion().addAction(

@MotionMode, @ Jumping,

new int[]{@Jumping });

ifdef Jumping

private boolean bJumping=false;

……

DigTtemplate

JumpproHighlightTitleFallGemHero

DigScreen

Adapt

Legend

Menu

TimeManagerImport
RepaintBackGround

Meta-component

CloudMIDlet

CommonAction

Infobox

ClimbTemplate

ClimbScreen

BackGround

Canvas

Floor

HuntScreen

HuntTemplate

QuarryArrow

FeedingScreen

FeedingTemplate

RPG.spc

Fig. 12. KongfuTemplate for the Kongfu game

Fig. 9. Jumping related actions

Fig. 10. Jumping related methods

66 W. Zhang and S. Jarzabek

necessary customizations of the existing meta-components. We may also need to
develop new meta-components, to address extensions not catered for by the RPG-
PLA.

We show the processes with a new game named Kongfu running on Motorola
6288. A ‘learner’ learns Kongfu skills from his ‘master’. Therefore we have two he-
roes in this game. The game has time manager to limit the time spent on learning. We
can reuse the TimeManger, MIDlet and Canvas meta-components from the RPG-PLA
without any changes. Figure 12 is the template meta-component for Kongfu.

With <insert> command, the original code contained in <break> body can be re-
placed by the modified code matched with the corresponding <break>s’ name.

We use <insert> to extend the Hero component (Figure 8) with new requirements
(e.g., to control the time the learner spent playing the taught action). We <adapt> the
Hero meta-component in two different ways, to produce components for the master
and the learner respectively (Figure 13). In the Kongfu game, the learner should fol-
low his master to learn Kongfu skills. The motion mode is quite different with that of
Dig Gem and of other games. Therefore new functions have to be <insert>ed to the
<break> named MotionMode (Figure 8) to overwrite the original code (Figure 13).

The running result of Kongfu game derived from RPG-PLA is shown in Figure 14.

9 Design Quality, Performance, and Productivity Evaluation

From the OO metrics in Table 4 and we can see that the design quality of original
games was very much the same as the quality of games derived from the RPG-PLA.
We improved the coupling between objects metrics, while the complexity was in-
creased a bit as the MSOO and MSOR value increased after the using of XVCL.

Table 4. OO metrics for game packages after using XVCL

Item CBO DOIH FO MIC MNOL MNOP MSOO NOM NOOM NORM TRAp TRAu TRDp TRDu VOD

climb 17 2 12 9 6 4 31 38 7 60 11 80 0 0 6

dig 23 2 17 22 4 5 19 58 7 76 27 100 0 0 11

feeding 13 2 10 8 3 2 13 32 7 38 5 80 0 0 4

hunt 26 3 21 20 6 5 19 61 7 73 27 100 0 0 9

Table 5. OO metrics for Dig Gem generated from XVCL meta-components

Item CBO DOIH FO MIC MNOL MNOP MSOO NOM NOOM NORM TRAp TRAu TRDp TRDu VOD

Cloud 5 2 4 2 4 3 6 8 1 4 27 100 0 0 1

Dig 2 1 2 2 0 1 1 5 0 2 0 0 0 0 1

DigCanvas 6 2 2 4 1 2 2 9 7 7 3 80 0 0 3

DigScreen 23 2 17 22 4 2 19 58 5 76 3 37 0 0 11

FallGem 5 2 4 3 1 5 2 7 1 5 27 100 0 0 2

Hero 4 2 0 4 2 1 10 6 2 11 7 83 0 0 3

HighlightTile 5 2 4 3 2 5 5 6 1 4 27 100 0 0 2

InfoBox 5 2 4 4 4 4 8 20 1 4 7 22 0 0 1

JumpProp 4 2 4 4 2 5 5 13 1 4 18 67 0 0 1

Menu 5 2 4 2 1 1 3 13 1 2 12 33 0 0 1

TimeManager 2 1 1 1 0 1 1 10 0 1 0 0 0 0 1

 Industrial Experience from RPG Software Product Line for Mobile Devices 67

Table 6. The performance comparison before and after applying XVCL

Memory usage for 3 runnings (Bytes) Running time (second) Name
1 2 3 average Improve-

ments
1 2 3 average Improve-

ments
Before 325784 325856 325848 325829 2.8% 149 148.6 148.3 148.6 9.9% Climb
After 316890 316684 316760 316778 133.4 134.2 134 133.9

Before 356624 356640 356604 356623 0.6% Feeding
After 354564 354592 354554 354570

Not available as there is only one scenario from the
beginning to the end in the game

Hunt Before 140700 141304 141612 141205 18.9% 168.1 169 173.5 170.2 2.7%

 After 114324 114296 114324 114524 165.8 163.8 167 165.5

Dig Before 274856 269088 266532 270158 11.3% 532.5 541.8 512 528.8

 After 242336 233732 242900 239656 470.5 490 468.4 476.3
9.9%

Performance results are shown in Table 6. For all the games, we measured the run-
ning time with memory monitor and profiler turned on in the Wireless Toolkit. This
allowed us to slow down the games in order to make more accurate measurements
and comparisons. The experiment environment was the Wireless Toolkit 2.2 Beta on
Windows XP, Pentium IV 1.4G with 512M memory.

From the we can see that in games derived from the RPG-PLA, the memory usage
decreased by almost 19% and the game run almost 10% faster than the corresponding
original games, both are the best cases. These performance improvements are due to
applying optimization strategies across all the games, further boosted by XVCL’s
ability to fine tune the strategies in the context of specific games.

Table 7. Line of code comparisons

 Original LOC Meta-components LOC Reduced LOC Reduced Percentage

Total 4526 3325 1201 26.5%

The product line approach also improved maintainability of games. From Table 7,
we can see that 26% of the code was reduced. While reduced code size need not
automatically mean reduced maintenance effort, in case of our solution it does trans-
late into savings on maintenance. When adding a new game feature, solutions already
represented in the RPG-PLA help understand how the new feature is to be imple-
mented. The RPG-PLA provides explicit patterns to address many types of changes
which makes evolution easier and kept in a systematic way.

As expected, the product line approach improved productivity of building new
games via reuse of the RPG-PLA. The average effort for the development of each of
the original four games was 90 man-days. For various business reasons, the Kongfu
game was developed twice by two separate Teams A and B, each consisting of two
Sanjie developers of comparable skills. Team A developed the Kongfu game in very
much the same way as the original four games had been developed, which took the
effort of 88 man-days. Group B used RPG-PLA to develop the Kongfu game, which
took the effort of 28 man-days. Because the project is still in an initial phase, we do
not have more statistics. However, in addition to the reduced effort, the feedback from
Team B regarding the ease of reuse was quite encouraging.

68 W. Zhang and S. Jarzabek

10 Related Work

The problem of variability in product lines and product line architectures have been
discussed in many sources [2][4][5][9]. Authors of [15] present a way of integrating
of variability into the product line architecture to enhance traceability of variant fea-
tures. The importance of applying a proper variability realization mechanism has been
also pointed out in the above mentioned sources, and specific problems (e.g., explo-
sion of component versions) have been discussed in [5].

Various approaches to design and evolve the product line architecture have been
described in [2][4][5][9]. In our project, we applied a combination of extractive and
pro-active approach. Our strategy was also based on the incremental reengineering of
existing system family into a product line developed in our earlier experiments [17].
We applied XVCL in J2EE [16] and ASP [14] Web Portal product lines achieving
similar simplification and related productivity gains as we observed in the project
described in this paper. To aid in re-engineering of legacy code into product line ar-
chitectures, we developed a tool called Clone Miner capable of finding similarity
patterns in existing programs [1].

Performance is an important consideration for the successful application of reuse
technologies [13]. The method described in [6] uses a meta-level architecture to sepa-
rate domain descriptions from technical code, in which it is similar to XVCL. As the
domain discussed in [6] is different from the resource constrained device domain,
performance issues are not addressed. A solution to handling variability in technical
concerns such as data persistence, screen management, session management with a
container abstraction, is described in MobCon [12]. However, MobCon can only
handle variants of those predefined technical concerns, while the solution described in
this paper can deal with any kind of variability.

11 Conclusions

We described a project in which we applied product line approach to aid in imple-
menting mobile device Role-Playing Games (RPGs). We started with four existing
games, and applied a combination of extractive and proactive approaches to build an
RPG Product Line Architecture (RPG-PLA). Due to reuse, we shortened the effort to
develop a new game from 88 man-days to 28 man-days in the initial applying.

As mobile devices require highly optimized solutions, we paid particular attention
to performance. An interesting result of our experiment is that games derived from the
RPG-PLA performed better, in terms of both speed and memory consumption, than
the original games, developed as custom products. We achieved this result by imple-
menting optimization strategies into the RPG-PLA that could be propagated to games
derived from it. In the paper, we presented technical details of our solution, as well as
statistics illustrating the results.

In the future work, we plan to accommodate in the RPG Product Line Architecture
more variations in game rules, and to address the characteristics of specific devices
that have to do with performance. We also plan to apply the product line techniques to
other types of mobile device software.

 Industrial Experience from RPG Software Product Line for Mobile Devices 69

Acknowledgements. This research is sponsored by “Excellent Teacher Funds of
Tongji University”. Thanks to Liu Wei and other authors from Meitong Co. Ltd. who
have implemented the original games and participated in the project.

References

[1] Basit, A.H. and Jarzabek, S. “Detecting Higher-level Similarity Patterns in Programs,” to
appear in ESEC-FSE'05, European Software Eng. Conf. and ACM SIGSOFT Symp. on
the Foundations of Software Eng., Sept. 2005, Lisbon

[2] Bosch, J. Design and Use of Software Architectures – Adopting and evolving a product-
line approach, Addison-Welsey, 2000

[3] Chidamber S. R. and Kemerer C. F.,“A metrics suite for object oriented design,” IEEE
Trans. Software Eng., vol. 20, pp. 476–493, 1994

[4] Clements, P. & Northrop, L. “Software Product Lines: Practices and Patterns”. Boston,
MA: Addison-Wesley, 2001.

[5] Deelstra, S., Sinnema, M. and Bosch, J. “Experiences in Software Product Families:
Problems and Issues during Product Derivation”. Proceedings of SPLC2004, Boston,
Aug. 2004, LNCS3154, Springer-Verlag, pp. 165-182

[6] Fritsch C. and Renz B. Four Mechanisms for Adaptable Systems: A Meta-level Approach
to Building a Software Product Line. Proceedings of SPLC2004, Boston, Aug. 2004,
LNCS 3154: 51-72

[7] Giguere E. Understanding J2ME Application Models. October 2002.
[8] Kang, K et al. “Feature-Oriented Domain Analysis (FODA) Feasibility Study”.

CMU/SEI-90-TR-21, SEI, Carnegie Mellon University, Pittsburgh.
[9] Krueger, C. “Eliminating the Adoption Barrier,” Point-Counter Point Column, in IEEE

Software July/August 2002, pages 28-31
[10] Marinescu R. An Object Oriented Metrics Suite on Coupling. Master’s thesis,

”Politehnica” University of Timisoara, 1998.
[11] Michael C. Daconta, et al. More java pitfalls. Wiley, 2003
[12] MobCon www.st.informatik.tu-darmstadt.de/static/pages/projects/mobcon/
[13] Opdahl, A. Sindre, G. Vetland, V. Performance considerations in object-oriented reuse.

Proceedings Advances in Software Reuse, Mar. 1993. pp:142–151
[14] Pettersson, U., and Jarzabek, S. “Industrial Experience with Building a Web Portal Prod-

uct Line using a Lightweight, Reactive Approach,” to appear in ESEC-FSE'05, European
Software Eng. Conf. and ACM SIGSOFT Symp. on the Foundations of Software Eng.,
Sept. 2005, Lisbon

[15] Thiel S. and Hein A: Systematic Integration of Variability into Product Line Architecture
Design. Proceedings of SPLC2002; LNCS 2379, San Diego, California, August, 2002 :
130-153

[16] Yang, J. and Jarzabek, S. “Applying a Generative Technique for Enhanced Reuse on
J2EE Platform,” accepted for 4th Int. Conf. on Generative Programming and Component
Engineering, GPCE'05, Sep 29 - Oct 1, 2005, Tallinn, Estonia

[17] Zhang W. at al. Reengineering a PC-based System into the Mobile Device Product Line.
Proc. IWPSE03. Helsinki, Finland. Sept. 2003, PP. 149-161

[18] XVCL http://fxvcl.sourceforge.net

Extracting and Evolving Mobile

Games Product Lines

Vander Alves, Pedro Matos Jr., Leonardo Cole,
Paulo Borba, and Geber Ramalho

Informatics Center, Federal University of Pernambuco,
P.O. Box 7851 - 50.732-970 Recife PE, Brazil
{vra,poamj,lcn,phmb,glr}@cin.ufpe.br

Abstract. For some organizations, the proactive approach to product
lines may be inadequate due to prohibitively high investment and risks.
As an alternative, the extractive and the reactive approaches are in-
cremental, offering moderate costs and risks, and therefore sometimes
may be more appropriate. However, combining these two approaches de-
mands a more detailed process at the implementation level. This paper
presents a method for extracting a product line and evolving it, rely-
ing on a strategy that uses refactorings expressed in terms of simpler
programming laws. The approach is evaluated with a case study in the
domain of games for mobile devices, where variations are handled with
aspect-oriented constructs.

1 Introduction

There are several approaches for developing software Product Lines (PL) [5]:
proactive, reactive, and extractive [13]. Since the proactive approach supports
the full scope of products needed on the foreseeable horizon, it demands a high
upfront investment and offers more risks; therefore, it may be unsuitable for
some organizations, particularly for small to medium-sized software develop-
ment companies with projects under tight schedules. In contrast, the other two
approaches have reduced scope and therefore require a lower investment; they
are incremental and thus can be more suitable for such organizations. An inter-
esting possibility is to combine the last two approaches. But, to our knowledge,
this alternative has not been addressed systematically at the architectural and
at the implementation levels.

In all approaches, variability management must be addressed in the domain:
while focusing on exploiting the commonality within the products, adequate sup-
port must be available for customizing the PL core in order to derive a particular
PL instance. The more diverse the domain, the harder it is to accomplish this
task. This, in some cases, may outweigh the cost of developing the PL core itself.

This paper addresses the issues of structuring and evolving product lines in
highly variant domains. In particular, we present a method that relies on the
combination of the extractive and the reactive approaches, by initially extracting
variation from an existing application and then reactively adapting the newly

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 70–81, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Extracting and Evolving Mobile Games Product Lines 71

created PL to encompass other variant products. The method systematically
supports both the extractive and the reactive tasks by defining refactorings that
are derived from simple Aspect-Oriented Programming (AOP) [12] laws. Further,
we evaluate our approach in the context of an industrial-strength mobile game
product line.

Indeed, there are a number of techniques for managing variability from re-
quirements to code level. Most techniques rely on object-oriented concepts. These
techniques, however, are well-known for failing to capture crosscutting concerns,
which often appear in highly variant domains. Mobile games, in particular, must
comply with strict portability requirements that are considerably crosscutting,
thereby suggesting AOP to handle variation, which is explored in our method.

The next section provides the background needed for describing our ap-
proach. The section briefly explains variability issues in the mobile games domain
and also introduces AOP. Section 3 describes our approach, including its strategy
and both extractive and reactive refactorings. The industrial case study evaluat-
ing the approach is presented in Section 4. We discuss related work in Section 5
and offer concluding remarks in Section 6.

2 J2ME Games and Aspects

Mobile games (and mobile applications, in general) must adhere to strong porta-
bility requirements. This stems from business constraints: in order to target more
users, owning different kinds of devices, service carriers typically demand that a
single application be deployed in a dozen or more platforms. Each platform gen-
erally provides vendor-specific Application Programming Interfaces (APIs) with
mandatory or optional advanced features, which the developer is likely to use
in order to improve game quality. In addition, devices have memory and display
constraints, which further requires the developer to optimize the application. In
either case, adapting the game for each platform is mandatory.

In this work, we focus on game development for mobile phones using J2ME’s
MIDP profile, which is targeted at mobile devices with constrained resources [14].
We analyze and manage the specific kinds of variations arising from platform
variation, where platform means a combination of MIDP, vendor-specific API,
and hardware constraints. Accordingly, some of the specific challenges for man-
aging variation in this domain are the following: UI features (such as screen
size, number of colors, pixel depth, sound, keypad display); available memory
and maximum application size; different profile versions (MIDP 1.0 and MIDP
2.0); different implementation of the same profile; proprietary APIs and optional
packages; known device-specific bugs ; different idioms.

These specific kinds of variation tend to be considerably fine-grained such
that they generally crosscut the game core and are tangled with other kinds
of variation. This suggests AOP as a suitable candidate for modularizing these
variations.

Aspect-oriented languages support the modular definition of concerns that
are generally spread throughout the system and tangled with core features. These

72 V. Alves et al.

are called crosscutting concerns and their separation promotes the construction
of a modular system, avoiding code tangling and scattering.

AspectJ [1] is the most widely used aspect-oriented extension to Java. Pro-
gramming with AspectJ involves both aspects and classes to separate concerns.
Concepts which are well defined with object-oriented constructs are implemented
in classes. Crosscutting concerns are usually separated using units called aspects,
which are integrated with classes through a process called weaving. Thus, an
AspectJ application is composed of both classes and aspects. Therefore, each
AspectJ aspect defines a functionality that affects different parts of the system.

Aspects may define pointcuts, advice and inter-type declarations. Pointcuts
describe join points, which are sets of points of the program execution flow. Code
to be executed at join points is declared as advice. Inter-type declarations are
structures that allow the introduction of fields and methods into a class.

3 Method

Contrary to the proactive approach, which is more like the waterfall model, we
rely here on a combination of the extractive and the reactive approaches. There
are a number of reasons for this. First, small to medium-sized organizations,
which still want to benefit from PLs, cannot afford the high cost incurred in
adopting the proactive approach. Second, in domains such as mobile game de-
velopment, the development cycle is so short that proactive planning cannot be
completed. Third, there are risks associated in the proactive approach, because
the scope may become invalid due to new requirements.

Our method first bootstraps the PL and then evolves it with a reactive ap-
proach. Initially, there may be one or more independent products, which are
refactored in order to expose variations to bootstrap the PL. Next, the PL scope
is extended to encompass another product: the PL reacts to accommodate the
new variant. During this step, refactorings are performed to maintain the exist-
ing product, and a PL extension is used to add a new variant. The PL may react
to further extension or refactoring.

The method is systematic because it relies on a collection of provided refac-
torings. Such refactorings are described in terms of templates, which are a concise
and declarative way to specify program transformations. In addition, refactor-
ing preconditions (a frequently subtle issue) are more clearly organized and not
tangled with the transformation itself. Furthermore, the refactorings can be sys-
tematically derived from more elementary and simpler programming laws [6].
These laws are appropriate because they are considerably simpler than most
refactorings, involving only localized program changes, with each one focusing
on a specific language construct.

3.1 Extraction

The first step of our method is to extract the PL: from one or more existing
product variants, we extract a common core and corresponding product-specific

Extracting and Evolving Mobile Games Product Lines 73

adaptation constructs. According to the variability nature of our domain, these
constructs correspond to AspectJ constructs. The left-hand side of Figure 1
depicts this approach.

Fig. 1. Bootstrapping the Product Line

Product1 and Product2 are existing applications in the same domain (for
example, versions of a J2ME game for two platforms). Core represents the com-
monality within these applications. The core is composed with the Aspect and
Aspect’ aspects in order to instantiate the original products. These aspects thus
encapsulate product-specific code.

The feature diagram [8,4] for the PL is shown on the right-hand side of
Figure 1. The diagram shows that the new PL is composed of two alternative
subfeatures, F1 and F2, representing Product1 and Product2, respectively. The
mapping between features and aspects is specified by a configuration knowledge
mechanism [7], which imposes constraints on features and aspect combinations
like dependencies, illegal combinations, and default combinations. Constraints
involving only feature combinations are also specified in the feature model. The
feature diagram is simple, since the PL has just been bootstrapped. However,
as the PL evolves, either to accommodate more products or to explore further
reuse opportunities, the diagram becomes more complex (Section 3.2).

In order to extract the variation within Product1 and Product2 — thus defin-
ing Aspect and Aspect’— we must first identify it in the existing code base. When
more than one variant exists, diff-like tools provide an alternative. In either case,
however, such a view is too detailed at this point. Indeed, the developer first
needs to determine the general concerns involved. This could be described more
concisely and abstractly with concern graphs, whose construction is supported
by a specific tool [16]. Concern graphs localize an abstracted representation of
the program elements contributing to the implementation of a concern, mak-
ing the dependencies between the contributing elements explicit. Therefore, the
actual first step in identifying these variations is to build a concern graph cor-
responding to known variability issues. In the case study described in Section 4,
such issues would be the ones discussed in Section 2.

Once the concern graph is constructed, the developer should analyze the
variability pattern within that concern. Depending on the pattern, a refactoring
may be applied in order to extract it from the core. By analyzing applications
in the domain of mobile games, we observed a number of recurring variability
patterns, for which the corresponding refactorings are listed in Table 1.

74 V. Alves et al.

Table 1. Summary of Refactorings

Refactoring Name

1 Extract Method to Aspect

2 Extract Resource to Aspect - after

3 Extract Context

4 Extract Before Block

5 Extract After Block

6 Extract Argument Function

7 Change Class Hierarchy

8 Extract Aspect Commonality

Some of the refactorings in Table 1, such as Change Class Hierarchy, are
coarse-grained; others, such as Extract Argument Function, are fine-grained;
some, such as Extract Method to Aspect, have medium granularity. Part of their
names refers to an AspectJ construct that encapsulates the variation. For exam-
ple, the Extract Method to Aspect refactoring is intended to extract the variant
part of a concern, appearing in the middle of a method body, into AspectJ’s
inter-type declaration construct. Such declaration can then be implemented ac-
cording to the specific variant. The refactoring structure is shown next:

Refactoring 1 〈Extract Method to Aspect〉

ts
class C {

fs
ms
T m(ps) {
body
body ′

body ′ ′

}
}

→

ts
class C {

fs
ms
T m(ps) {
body
newm(αps ′);
body ′′

}
}
privileged aspect A {

T ′ C .newm(ps ′) {
body ′

}
}

provided

• A cannot be defined in ts ;
• body ′ does not change more than one local variable;
• A does not introduce any field to C with the same name of a C field

used in body ′.

Extracting and Evolving Mobile Games Product Lines 75

On the left-hand side, body ′ denotes the variability to be extracted. On the
right-hand side, such variability is extracted into aspect A’s inter-type declara-
tion; thus a different aspect may provide a different variant implementation with
that construct. We denote the set of type declarations (classes and aspects) by
ts. Also, fs and ms denote field declarations and method declarations, respec-
tively. Finally, we use α preceding a list of parameters to denote only the names
of those parameters.

The refactoring provides preconditions to ensure that the program is valid
after the transformation. Another use of the preconditions is to guarantee that
the transformation preserves behavior. Refactoring 1 has preconditions arising
from simpler transformations and refactorings, whose composition yields the
whole refactoring.

The first precondition guarantees validity: since the refactoring creates an
aspect A, such aspect cannot be defined in ts. For the second precondition, as
we rely on the Extract Method refactoring [9], we need a precondition stating
that the piece of code extracted into its own method does not change more
than one local variable. Otherwise, the extracted code would need to return
two values, and that would not be possible. Regarding the third precondition,
visibility modifiers of inter-type declarations are related to the aspect and not
to the affected class, according to the AspectJ semantics. Hence, it is possible
to declare a private field as a class member and as an inter-type declaration at
the same time using the same name. As a consequence, transforming a member
method that uses this field into an inter-type declaration implies that the method
now uses the aspect inter-typed field. This leads to a change in behavior. A
precondition is thus necessary to avoid this problem.

As mentioned, the application of the refactoring creates a new aspect (A),
which is related to a variant concern. Further application of other refactorings
may refine A, incorporating additional elements of this concern, possibly using
other constructs such as pointcuts and advice. In fact, except for Refactorings
1 and 7, all the others in Table 1 deal with pointcuts and advice constructs. A
slight variation of Refactoring 1 would consider the pre-existence of aspect A in
order to make the refactoring available for repeated applications. Additionally,
even though aspect A is privileged, this constraint can be removed later, after
moving, with intermediate refactorings, other pieces of the variant concern into
the aspect, for example by using the Extract Resource to Aspect refactoring.

Indeed, after applying Refactoring 1, there may remain other variabilities to
be extracted from the core. The strategy is to apply the refactorings in Table 1
repeatedly, such that the product line core and the variant aspects are built
progressively. Section 4 illustrates this with a case study.

3.2 Evolution

Once the product line has been bootstrapped, it can evolve to encompass addi-
tional products. In this process, a new aspect is created to adapt the core to the
new variant. Moreover, a new feature is added to the feature diagram in order to

76 V. Alves et al.

Fig. 2. Evolving the Product Line

Fig. 3. Refactoring the Product Line

represent the new product, and the configuration knowledge is updated to map
the new feature to the new aspect (Figure 2).

The refactorings in Table 1 can also be used for evolution. As Figure 2 also
indicates, the core itself may evolve because features common to Product1 and
Product2 might not be shared by Product3. This may trigger further adaptation
of the previously existing aspects, too. However, AspectJ tools can identify parts
of the core on which these previous aspects depend, and some refactorings are also
aspect-aware [10], thereby minimizing the need to revisit such previous aspects.

Another evolution scenario involves restructuring the product line to explore
commonality within aspects. Such commonality would not be in the core when
it is not shared by all products, but only by a subset. The feature diagram is also
changed to show the commonality extraction (Figure 3). The existing common-
ality is extracted from F1 and F2 and is represented as a new optional feature,
F12. Further, the feature model is augmented with the constraint that F1 and
F2 depend on F12, and the configuration knowledge with the mapping of F12 to
Aspect12. An alternative approach would not update the feature model, but then
the configuration knowledge would have to map F1 to {Aspect1′′,Aspect12} and
F2 to {Aspect2′′,Aspect12}. The former alternative should be used when it is
meaningful to have the F12 feature; the latter when the extracted commonality
is meaningful only at the code level.

Figure 3 can become more complex with the addition of new platforms and
identification of reusable aspects. However, constraints in the feature model as
well as the configuration knowledge (the mapping of features to aspects) limit
aspect combinations, thereby providing support for scalability.

4 Method Evaluation

We performed a case study to evaluate variability in J2ME games, which are
mainstream mobile applications of considerable complexity in comparison with

Extracting and Evolving Mobile Games Product Lines 77

other mobile applications. In particular, we investigated how the same game
GM was adapted to run in three platforms (P1, P2, and P3)1. P1 relies solely on
MIDP 1.0, whereas P2 and P3 rely on MIDP 1.0 and a proprietary API. GM is
a game currently offered by service carriers in South America and Asia.

The variability issues within these products are as follows: optional images,
proprietary API, application size limit, screen dimensions, and additional keys.
One important remark is that these features are not independent. Indeed, ap-
plication size constrains other features, such as optional images and additional
keys.

In order to evaluate our approach, we created a PL implementation of the
three products and then compared the PL version with the original implemen-
tation of these products. To create and evolve the PL, we first identified the
variabilities (such as optional images) with concern graphs and then moved their
definition to aspects using the Extract Resource to Aspect refactoring. In another
step, we addressed method body variability within the platforms. Accordingly,
we made extensive use of the Extract Method to Aspect refactoring. The Extract
After Block and Extract Before Block refactorings were used when the variant
code appeared at the end or beginning of the method body. On the other hand,
the Extract Context refactoring was used when the variation surrounded common
code, representing a context to it. The Extract Argument Function refactoring
was used when variation appeared as an argument for a method call. Finally,
we used the Change Class Hierarchy refactoring to deal with class hierarchy
variability.

As mentioned in Section 3.1, in order to better identify and understand some
variations, we can use concern graphs, which are created iteratively by querying
a model of the program, and by determining which elements (class, methods,
and fields) and relationships returned as part of the queries contribute to the
implementation of the concern. The querying process starts with a seed [16],
usually a class found with a lexical tool. From this class, the remaining elements
are added with tool support. For example, the concern graph C for the optional
images concern (oi) in P1 would be as follows:

Cp1,oi = (Vp1,oi ,V ∗
p1,oi ,Ep1,oi),V ∗

p1,oi = ∅

Vp1,oi =
{

Resources ,GameScreen,Resources .dragonRight ,
Resources .loadImages(),GameScreen.wakeEnemy()

}
,

Ep1,oi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(reads ,GameScreen.wakeEnemy(),Resources .dragonRight),
(writes ,Resources .loadImages(),Resources .dragonRight),
(declares ,Resources ,Resources .dragonRight),
(declares ,Resources , loadImages()),
(declares ,GameScreen,wakeEnemy())

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

The set Vp1,oi describes the vertices (classes, methods, attributes) partially
implementing the concern. Set V ∗

p1,oi consists of vertices (classes, methods) solely

1 The actual names are not relevant here.

78 V. Alves et al.

dedicated to the concern implementation. Finally, set Ep1,oi groups edges relat-
ing elements from the previous sets.

During the evolution of the PL to include P3, we had to deal with the load
images on demand concern. This concern was specific to this platform, as it
had constrained memory and processing power. To implement this concern, we
had to define a method for each screen that could be loaded. Before a screen
was loaded, the corresponding method was called. In contrast, in P1 and P2

implementations, the images were loaded only once, during game start-up. In
this case, there was only one method that loaded all the images into memory.
This situation illustrates the scenario in Figure 2.

We addressed this by applying a sequence of Extract Method refactorings in
the core to break the single method loading all images into finer-grained methods
loading images for each screen; the call of this single method was then moved
from the core to P1’s and P2’s aspects, and the calls to such smaller methods
were moved to P3’s aspect by the Extract Before Block refactoring.

Another evolution scenario took place when we realized that some common-
ality existed between P1 and P2 with respect to the flip feature2: these two
platforms are from the same vendor and share this feature, which is not shared
by P3, from another vendor. Therefore, the flip feature is isolated in the corre-
sponding aspects of P1 and P2, but it would be useful to extract this commonality
into a single module. In fact, we were able to factor this out into a single generic
aspect with the Extract Aspect Commonality refactoring, thus illustrating the
scenario in Figure 3.

After creation and evolution of the PL, we analyzed code metrics. Table 2
shows the number of Lines of Code (LOC) for each product in the original im-
plementation, in contrast with the PL implementation. We calculate the LOC of
a PL instance as the sum of the core’s LOC and the LOC of all aspects necessary
to instantiate this specific product.

Table 2. LOC in original and PL implementations

Original Implementation PL Implementation

P1 P2 P3 Total Core P1 P2 P3 Total

2965 2968 3143 9076 2549 3042 3047 3210 4405

Table 2 shows that LOC is slightly higher when comparing each PL instance
with the corresponding product in the original implementation. This is caused
by the extraction of methods and aspects, which increase code size due to new
declarations. On the other hand, there is a 48% reduction in the total LOC
of the PL implementation, when compared to the sum of LOCs of the single
original versions. This was possible because the core, which represents 57% of
the PL LOC, is reused in all instances, thus eliminating most of code repetition
2 Proprietary graphic API allowing an image object to be drawn in the reverse direc-

tion, without the need for an additional image.

Extracting and Evolving Mobile Games Product Lines 79

occurring when there are three independent implementations. Another factor
that contributes to the reduction in PL LOC is the existence of reusable aspects.

Another analyzed metric was the packaged application (jar files) sizes of the
original and of PL implementations (Table 3). The jar files include not only the
bytecode files, but also every resource necessary to execute the application, such
as images and sound files. The jar file size is a very important factor in games
for mobile devices, due to memory constraints.

We can notice a jar size increase from original versions to PL instances.
The reason for this is the overhead generated by the AspectJ weaver on the
bytecode files. We also noticed that very general pointcuts intercepting many
join points can lead to greater increases in bytecode file sizes. This considerably
influenced us in the definition and use of the refactorings. Moreover, we can
gain a significant reduction in the jar size when using a bytecode optimization
tool [2]. The reduced size of each original version and PL instance are shown in
Table 3.

Table 3. Jar size (kbytes) in original and PL implementations

Original Implementation PL Implementation

size reduced size size reduced size

P1 61,9 58,5 97,0 67,9

P2 61,7 57,3 97,6 61,8

P3 56,1 52,4 93,5 56,7

Total 179,8 168,2 288,2 186,3

5 Related Work

Prior research also evaluated the use of AOP for building J2ME product lines [3].
We complement this work by considering the implementation of more features in
an industrial-strength application, explicitly specifying the refactorings to build
and evolve the PL, and raising issues in AspectJ that need to be addressed in
order to foster widespread application in this domain.

AOP refactorings have also been described elsewhere [15,11]. The former pro-
poses a catalog for object-to-aspect and aspect-to-aspect refactorings, whereas
the latter provides an abstract representation of object-to-aspect refactorings as
roles. However, their use in the PL setting is not explored, and the refactorings
format follows the imperative style [9]; in contrast, our approach is template-
oriented, abstract, concise, and thus does not bind a specific implementation,
which could be done, for instance, with a transformation systems receiving as
input refactoring templates.

Concern graphs provide a more concise and abstract description of concerns
than source code [16]. We rely on concern graphs to identify variant features.
Once the concern is identified, we extract it into an aspect and may further
revisit it during PL evolution.

80 V. Alves et al.

In previous work, a language-independent way to represent variability is pro-
vided, and it is shown how it can be used to port J2SE applications to a J2ME
product line [17]. Our approach differs from such work because, although ours re-
lies on language-specific constructs, it has the advantage of not having to specify
join points in the base code.

6 Conclusions

We present a method for creating and evolving product lines combining the reac-
tive and extractive approaches. Our method uses a set of refactorings, which can
be extended when necessary. These refactorings can be derived from a combina-
tion of programming laws that allow us to better understand these refactorings
and increase the confidence that they are correct. Our refactorings rely on AOP
to modularize crosscutting concerns and to generalize the implementations of
these concerns in order to increase code reuse. Constraints in the feature model
and in the configuration knowledge limit aspect combination and thus promote
scalability of the process.

Our evaluation with an existing mobile game shows that we can benefit
from extensive code reuse and easily evolve the PL to encompass other products
while still maintaining code reliability. It also shows that the sequence of applied
refactorings must be strategically chosen. This strategy can be influenced by
some factors like desirable reuse level and application size restrictions. Although
the evaluation is in the mobile game domain, we argue that the method and the
issues addressed here are valid for mobile applications in general, of which mobile
games are representative. We also believe that other highly variant domains could
benefit from our method.

Acknowledgements

We thank Meantime Mobile Creations for granting us access to the game used in
our case study and for fruitful discussions with lead developers Alexandre Dam-
asceno and Pedro Sampaio. We also appreciate valuable feedback from the mem-
bers of SPG, André Santos, Jeff Gray, the anonymous referees, and our shepherd
Pierre America. This work was partially supported by CNPq and FACEPE.

References

1. AspectJ project. http://www.eclipse.org/aspectj/, 2005.
2. ProGuard. http://proguard.sourceforge.net, 2005.
3. M. Anastasopoulos and D. Muthig. An evaluation of aspect-oriented programming

as a product line implementation technology. In Proceedings of the International
Conference on Software Reuse (ICSR), 2004.

4. T. Bednasch, K. Czarnecki, U. Eisenecker, and M. Lang. Captain Feature.
https://sourceforge.net/projects/captainfeature/, 2005.

Extracting and Evolving Mobile Games Product Lines 81

5. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2002.

6. L. Cole and P. Borba. Deriving refactorings for AspectJ. In AOSD’05: Proceedings
of the 4th international conference on Aspect-oriented software development, pages
123–134, 2005.

7. K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

8. K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using feature
models. In SPLC, pages 266–283, 2004.

9. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving
the Design of Existing Code. Addison–Wesley, 1999.

10. Oberschulte C. Hanenberg S. and Unland R. Refactoring of aspect-oriented soft-
ware. In Net.ObjectDays, Erfurt, Germany, September 2003.

11. J. Hannemann, G. Murphy, and G. Kiczales. Role-based refactoring of crosscutting
concerns. In AOSD ’05: Proceedings of the 4th international conference on Aspect-
oriented software development, pages 135–146, 2005.

12. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and
J. Irwin. Aspect–Oriented Programming. In European Conference on Object–
Oriented Programming, ECOOP’97, LNCS 1241, pages 220–242, 1997.

13. C. Krueger. Easing the transition to software mass customization. In Proceedings
of the 4th International Workshop on Software Product-Family Engineering, pages
282–293, 2001.

14. Sun Microsystems. JSR-37 Mobile Information Device Profile (MIDP).
http://jcp.org/aboutJava/communityprocess/final/jsr037/index.html,
2000.

15. M. Monteiro and J. Fernandes. Towards a catalog of aspect-oriented refactorings.
In AOSD ’05: Proceedings of the 4th international conference on Aspect-oriented
software development, pages 111–122, 2005.

16. M. Robillard and G. Murphy. Concern graphs: Finding and describing concerns
using structural program dependencies. In Proceedings of the 24th International
Conference on Software Engineering, pages 406–416, 2002.

17. W. Zhang, S. Jarzabek, N. Loughran, and A. Rashid. Reengineering a PC-based
system into the mobile device product line. In Proceedings of the Sixth International
Workshop on Principles of Software Evolution (IWPSE’03), 2003.

Determining the Variation Degree of Feature Models

Research Group Software Construction
RWTH Aachen University

Abstract. When developing a product line the knowledge about the variation de-
gree is of vital importance for development, maintenance and evolution of a prod-
uct line. In this paper we focus on the variation degree of product line feature
models, considering different types of variability and dependency relationships
between features.

Feature based domain modeling is a well-known technique in requirements engi-
neering of product lines. The overall objective is to model commonality and variability
in a product line feature model (PLFM) [2]. From the PLFM, dedicated product feature
models (PFM) can be derived. The process of deriving a PFM is called product instan-
tiation. Instantiation is done by resolving the variation points of the PLFM correctly,
especially obeying the dependencies between features. The basis for instantiation is a
normalized feature tree, which we discussed in detail in [3].

In this paper we focus on the variation degree of a PLFM representing the number
of valid PFMs that can be instantiated. Only little work has already been done in for-
malizing feature models and in investigating how the variation degree of feature models
can be calculated. Besides Eisenecker et al. [4], an important contribution is provided
by van Deursen and Klient [5] who presented a Feature Description Language to for-
mulate features and feature models in a textual representation. They introduced rules for
computing variability. These rules are almost equivalent to the formulas we present in
section 2.1. Unfortunately they ignored the presence of dependencies. Based on their
approach we propose how to calculate the variation degree of a PLFM considering de-
pendencies.

The variation degree reveals the instantiation space of the product line on basis of
the feature model. The variation degree of a feature in the feature tree represents the
number of possible instantiations below this feature. Therefore, the variation degree of
the root feature states the number of possible instantiations of the PLFM. This informa-
tion is of vital importance for deciding whether the PLFM captures the desired variabil-
ity adequately. In a proactive product line approach the variation degree is necessary for
planing the product line. It reveals information about the flexibility and complexity of
the product line, having great impact on every development phase like design, imple-
mentation and quality assurance. In a reactive approach and especially in merging sev-
eral individual products into a product line, the variation degree is even more important,

1 Introduction

2 Variation Degree

Thomas von der Maßen and Horst Lichter

,

{vdmass, lichter}@cs.rwth-aachen.de

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 82 – 88, 2005.
© Springer-Verlag Berlin Heidelberg 2005

product line oriented reengineering of the individual products, benefits from the varia-
tion degree. Furthermore, the impact on the variation degree can be assessed, when in-
troducing a new feature.

At first, we consider only domain relationships, ignoring dependencies, to deter-
mine the variation degree of a single feature. In a second step we regard dependencies
as well and analyze how dependencies influence the instantiation space.

FIn the following var represents the variation degree of a feature F. The variation
degree of a feature representing a leaf in the feature tree is set to 1. The variation degree
of a non-leaf feature (father feature) is influenced by the variation degrees of all its chil-
dren and the domain relationship type that connects the children to the father feature.

At first, we analyze the variation degree with respect to different domain relation-
ship types, offered by most feature modeling approaches (e.g. FODA [1]).

Mandatory. A mandatory-relationship between the features F and CF means that if the
father feature F is selected for a PFM, the child feature CF must be selected as well. The
variation degree of a feature F with n mandatory child features CFi is the product of the
variation degrees of all mandatory child features.

n
= var CFivar F

i 1 =

Option. An option-relationship between the features F and CF means that if the father
feature F is selected for a PFM, the child feature CF can but needs not to be selected.
The variation degree of a feature F with n optional child features CFi is the product of
the variation degrees of all optional child features. The variation degree of an optional
child feature is increased by 1 because the optional child feature can be selected or not.

n
= var CFi 1 + var F

i 1 =

Alternative. An alternative-relationship between the features F and CF means that if
the father feature F is selected for a PFM, exactly one feature of the alternative child
features must be selected. The variation degree of a feature F with n alternative child
features CFi is determined by the sum of the variation degrees of the alternative child
features because exactly one alternative child feature can be selected.

n
= var CFivar F

i 1 =

Or. An or-relationship between the features F and CF means that if the father feature F
is selected, at least one of the or-child features must be selected. The variation degree
of a feature F with n or-child features CFi is equal to the variation degree of a feature
F with optional child features decreased by 1 because at least one or-child feature has

2.1 Determining the Variation Degree Considering Domain Relationships

because this information was not required yet and is therefore not known. The necessary

Determining the Variation Degree of Feature Models 83

number of possible instantiations.
n

= var F var CFi 1 + 1 –
i 1 =

 Figure 1shows an example feature model to illustrate the formulas given above.

i

Al i

Or

i

Cell Phone

Bluetooth

Accu Cell

Li-Ion

Color1 1 1

11

3

2

24

3

1

1

Opt onal

ternat ve

Implication

Mutual Exclus on

Wireless Display

Infrared

Ni-MH Ni-Ca

Monochrome

Fig. 1. Variation degrees in a feature tree

The variation degree of all leaf features is 1. var(Accu Cell) is 3, because it is the
sum of its child feature variation degrees; var(Wireless) is 1 1 ++ 1 1 1 – = 3 ;
var(Display) is 2 and var(Cell Phone) is determined by 3 1 3 2 = 24 . Hence, the +
number of valid PFMs (ignoring the modeled dependencies) is 24. The valid PFMs can
be easily determined. They are not listed here because of space restrictions.

Dependencies constrain the binding of variation points. To be more precise, the ex-
istence of a feature F1 in a PFM determines the existence or non-existence of another
feature F2 , if a dependency has been modeled between these features. Therefore, de-
pendencies constrain the number of possible instantiations and thus they reduce the
variation degree of a PLFM. In this section we analyze the impact of dependencies on
the variation degree. We are considering the dependencies implication and mutual ex-
clusion, as these dependency types are offered by most feature modeling approaches.
An implication states that if the source feature is selected for a PFM the target feature
must be selected as well. A mutual exclusion between two features states that not both
features can be selected for the same PFM.

2.2 Determining the Variation Degree Considering Dependencies

to be selected. The case that no child feature is selected must be subtracted from the

84 T. von der Maßen and H. Lichter

If we consider e.g. the mutual exclusion between features Color and Ni-Ca all in-
stantiations containing both features become invalid, reducing the number of valid in-
stantiations in our example from 24 to 20. To determine the variation degree of the
PLFM we define:

• = Set of valid PFMs, ignoring all dependencies
• = (variation degree of the root feature ignoring dependencies)
• Depi

= Set of invalid PFMs, considering only dependency i

=• Depi Depi

We can always apply the following procedure to determine the number of valid
PFMs considering a single dependency Depi :

1. Determine the number of all valid PFMs ignoring the dependency i
2. Determine the number of invalid PFMs Depi

 resulting from dependency i
3. The number of valid PFMs considering the dependency i is the difference of

these the numbers Depi
= Depi

–

Table 1. Variation degree with selected / not selected child feature

Domain relationship type Variation degree

Mandatory
var F CFi

var CFj

n
=

j 1 =

var F CFi
0=

Option
var F CFi

var CFi var CFj 1 + j i
n

=
j 1 =

var F CFi
var CFj 1 + j i

n
=

j 1 =

Alternative var F CFi
var CFi=

var F CFi
var CFj j i

n
=

j 1 =

First of all, we show by means of our example how a single dependency in fluences
the variation degree of a PLFM. If we consider e.g. the implication between the features
Bluetooth and Li-Ion, the PFMs containing Bluetooth but not Li-Ion become invalid.
Hence, the number of valid instantiations is reduced by 8, because 8 PFMs that do con-
tain Bluetooth but not Li-Ion become invalid.

2.2.1 Considering a Single Dependency

Determining the Variation Degree of Feature Models 85

Table 1. Variation degree with selected / not selected child feature

Domain relationship type Variation degree

Or n
var F CFi

= var CFi var CFj 1 + j i
j 1 =

n
var F CFi

= var CFj 1 + 1 – j i
j 1 =

The formulas given above hold true if only one dependency is modeled in the
PLFM. If the feature tree contains multiple dependencies (which is the normal case),
the calculation becomes more difficult because of correlations between the constraints
resulting from dependencies.

Two dependencies Dep1 and Dep2 are correlated if the intersection set of invalid
PFMs resulting from these dependencies is not empty. To get exact values of the vari-
ation degrees, information about all sets of invalid PFMs Depi

is needed. If these sets
are known (e.g. by applying derivation and configuration approaches) Dep can be ex-
actly calculated by

n
= whereas Dep = – Depi

 and Dep Dep
i 1 =

• Dep = Set of valid PFMs, considering all dependencies
= (variation degree of the root feature considering dependencies) • Dep Dep

If the invalid PFMs Depi
 are not known, the following upper and lower bounds can

be given as a first approximation for the number of valid instantiations of a PLFM con-
sidering all dependencies. The upper bound is:

Dep = – max Depi

The lower bound is:

2.2.2 Considering Multiple Dependencies

The number of invalid PFMs resulting from a dependency is influenced by the de-
pendency type and the variation degrees of the features that are connected by the depen-
dency. Thus, it is necessary to establish the invalid PFMs, concerning the dependency.
Therefore, the variation degree of a feature must be determined if a dedicated child fea-
ture has to be part, respectively must not be part of a PFM. Table 1 depicts how to cal-
culate the variation degree of a feature F, considering the various domain relationship
types. Hereby var F CFi

 represents the variation degree of feature F if child feature
CFi is selected and var Fi CFi

 represents the variation degree of feature F if child fea-
ture CFi is discarded.

86 T. von der Maßen and H. Lichter

n

= max 0 – DepiDep
i 1 =

The upper bound gives a good approximation if the dependencies are strong corre-
lated with each other. It represents the exact variation degree if Depi Depj

j i .
That means, the set of invalid PFMs resulting from a dependency i is the super-set of
all other sets. The lower bound gives a good approximation if the correlation of the de-
pendencies is low. It represents the exact variation degree if there is no correlation be-
tween all modeled dependencies, i.e.

Aj
i j 1 n i jAi

=

Though the given bounds may represent the exact number of valid PFMs concerning
all dependencies, in most cases they are just approximations.

Concerning the Cell Phone example, the following values can be determined:
= 24 , DepMutE xcl

= 4 , DepImpl
= 8, Dep = 14 , Dep = 16 , = 12 . The Dep

bounds are just approximations, because the dependencies correlate in two invalid
PFMs, namely: {Cell Phone, Wireless, Bluetooth, Accu Cell, Ni-Ca, Display, Color Dis-
play} and {Cell Phone, Wireless, Infrared, Bluetooth, Accu, Ni-Ca, Display, Color Dis-
play}.

Originally introduced for modeling application domains, feature modeling has been
successfully applied in the context of product line engineering, because of its expres-
siveness of common and variable characteristics. Typically the variant characteristics
and their relationships express the flexibility of a product line and how many different
products can be derived. Therefore, we introduced the variation degree, which is impor-
tant for a reactive product line approach and during evolution. In contrast to existing ap-
proaches we considered not only domain relationships but also dependencies between
features. Especially, determining the variation degree if multiple dependencies are
present, is a hard task, because of correlations between the dependencies. Furthermore,
for an exact calculation, the invalid PFMs must be known. As these sets are normally
not known, we introduced an upper and a lower bound for the variation degree of a
PLFM and discussed under which conditions the bounds provide good and bad
 results.

3 Conclusion

For calculating the upper bound we consider only the dependency with the greatest
impact on the number of valid PFMs. Therefore, the number of valid PFMs is reduced
by at least Depi

(where Depi leads to the largest set of invalid PFMs). Dep can be
lower if there are other sets of invalid PFMs Depj

 that are no subsets of Depi
. That

means, these dependencies lead to invalid PFMs that are not covered by the dependency i.
For calculating the lower bound, we consider all dependencies. If a dependency i

correlates with a dependency j, we subtract the PFMs of the intersection set of Depi
and Depj

 twice from the number of valid PFMs. Therefore the sum of the Depi
can

become greater than . In this case we set the lower bound to 0, as the number of valid
PFMs cannot become negative.

Determining the Variation Degree of Feature Models 87

1. Kyo C. Kang et al., Feature-Oriented Domain Analysis (FODA) Feasibility Study, Technical
report CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon University,
2000.

2. Horst Lichter, Alexander Nyßen, Thomas von der Maßen, Thomas Weiler, Vergleich von An-
sätzen zur Feature Modellierung bei der Softwareproduktlinienentwicklung, Aachener Infor-
matik Berichte, Aachen 2003.

3. T. von der Massen, H. Lichter, Deficiencies in Feature Models, Proceedings of the Software
Variability Management for Product Derivation - Towards Tool Support, International Work-
shop of SPLC 2004, Boston, 2004.

4. U. Eisenecker, M. Selbig, F. Blinn, K. Czarnecki, Merkmalmodellierung für Softwaresystem-
familien, ObjectSpektrum, 5/2001, pp. 23-30, 2001.

5. A. van Deursen, P. Klint, Domain-Specific Language Design Requires Feature Descriptions,
Journal of Computing and Information Technology, 2001.

References

88 T. von der Maßen and H. Lichter

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 89 – 95, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Modeling Architectural Value:
Cash Flow, Time and Uncertainty

J.H. Wesselius

Philips Medical Systems, Business Unit Cardiovascular X-ray Systems,
P.O. Box 10,000 5680 DA Best, The Netherlands

Jacco.Wesselius@philips.com

Abstract. Developing a product family (architecture) means making early
investments. The product family architecture roadmap has to be considered in a
business context: how to optimize the expected business value? Estimating the
business value of (architectural) investments is a key step. This paper proposes
an extension to existing value estimating approaches by combining an NPV-
based approach with strategic scenarios to deal with uncertainty and
expectations about the future.

1 Introduction

Product family development is costly. The economical justification for product family
architecture development is based on future cost reduction or future value creation.
This means that product family architecture planning is done in the context of
expectations and assumptions about future developments: How do we expect the
future to be? How should the product family architecture evolve in order to maximize
its benefits? What is the business case for product family development?

To make the right choices for investments in product line development
(investments in architecture, organization, asset development etc.) estimating the
value of the investment is an essential step. To compensate for the effect of time
(income generated today is worth more than income generated in a couple of years),
Net Present Value (NPV) calculations are commonly used to make business
decisions. In this paper, we combine NPV-based value calculations with a scenario-
based approach to modeling expectations about the future. This way, expectations are
made explicit and probability assessments of scenarios can be used to estimate the
expected value of the investments.

First, a brief overview of economical factors in product line development will be
given. What are the effects of time, and what are the effects of uncertainty about the
future? After that, the effects of time and uncertainty will be combined into some a
formula combining NPV-calculations with scenario probabilities. This formula
explicitly expresses the way time and uncertainty influence the expected value of
investments. Finally, a simple example will be presented to clarify the effect of the
factors considered in the formula.

90 J.H. Wesselius

2 Cost Saving and Value Creation Opportunities

In [1][2] a series of case studies is described to calculate the cost/benefits of product
line development. In these studies a formula is used that captures the components of
the cost of product line development:

=

+++
1

1
))()((

n

i iPreuseCiPuniqueCcabCorgC (1)

Corg = organizational cost to adopt product line development
Ccab = development cost of core asset base suited to support the product line being

developed
Cunique(P) = the cost of developing unique software for product P, (software that is not

based on the product line platform)
Creuse(P) = the development cost to reuse core assets for the development of product P.

The organizational cost and the cost of core asset base development represent the
initial investments. For the investments in product line development to be
economically sound, the overall cost should be less than the cost of developing the
products on-by-one. In that case, product line development helps to reduce
development cost.

Development cost is just one factor, however. To optimize the value of the
investments they need to be well planned and well aligned with the organization’s
business drivers. Although different organizations will have different drivers, many
common drivers have been identified for which product line development can make
positive contributions: time to market, development efficiency, cross-product
compatibility, cost of product upgrades, cost of product manufacturing, life cycle
management costs etc. These are abstract terms that need to be translated into
economical terms to judge the value of the investments in the product line
(organization development, architecture and other assets).

From an economical point of view, the value of an investment is high if the
expected benefit from the investment is very probable and the expected time between
making the investment and getting the return on investment is short. To judge the
value of investments, both aspects should be taken into account. Making the relation
between the investment and the expected return on investment explicit is necessary to
justify the investment. Take for example “time to market”. This is in many cases an
important driver. But is the claim of reduced TTM always justified? To justify this
claim, assumptions are made about the future, e.g., which future products will be
developed? when will these products be developed? when will the market ask for these
products? what would the TTM reduction be if we make the investment? would a
valuable market opportunity be lost if we would not make the investment? etc.

3 Modeling the Value of (Architectural) Investments

To quantify the value of investments, Net Present Value calculations are commonly
used (see also [3] for an example of using NPV-calculations to quantify the value of

 Modeling Architectural Value: Cash Flow, Time and Uncertainty 91

architectural investments). In NPV calculations, a discount rate is used to compute the
value of future cost and future income: cash flow generated today is worth more than
cash flow generated later.

To use NPV-calculations for evaluating the value of architectural investments,
architectural scenarios (term taken from [4]) can be used. An architectural scenario is
a sequence of events characterized by the associated cash flow and the moment in time
the cash flow will be generated; a positive cash flow for income, and a negative cash
flow for investments. The NPV for an architectural investment can easily by
calculated with the NPV formula (1) by summing the NPV for the individual events.

Doing an NPV-calculation for architectural scenarios is not straightforward
however, since the value of an investment can only be judged in view of assumptions
about the future: market developments, application developments, and technology
developments. In [4], these assumptions are captured in strategic scenarios. For
different strategic scenarios the value of an architectural scenario will be different:

- if an architectural scenario creates value by enabling easy development of certain
features, the value of the architectural scenario is high in strategic scenarios that
predict a high business value for these features;

- if the enabled features prove to have no business value in another strategic
scenario, the value of the architectural scenario will prove low in that strategic
scenario.

The value of architectural investment scenarios is never for 100% certain, because
the future is not certain. We therefore speak of the expected NPV. The expected NPV
can be evaluated in the context of a set of strategic scenarios, which make assumptions
and expectations about the future explicit. Using these strategic scenarios, we propose
to determine the expected value of architectural scenarios in four steps:

1. draw up the architectural scenarios;
2. draw up the most important strategic scenarios;
3. estimate the cash flow for the architectural scenarios in combination with the

strategic scenarios:
a. estimate the investments needed to realize the architectural scenarios;
b. estimate the expected income for the architectural scenario if combined with

the strategic scenario;
4. calculate the expected NPV as follows:

])[(*])[,(

])..1[,(

1

irioStratScenayprobabilitirioStratScenaScenarioArchNPV

nrioStratScenaioArchScenarNPV
n

i

Expected

=

=
 (3)

timetediscountRa

cashflow
NPV

)1(+
= (2)

92 J.H. Wesselius

This approach makes explicit which factors contribute to the economical
justification of investments in architectural features of the product line:

1. a high probability of actually creating value based on the architectural
investments;

2. a short time interval between making the architectural investment and realizing
the benefits of the investment.

Note that it is not possible to judge the quality of the investment decisions by the
outcome: a choice that is bad in view of the expected future could result in a very
positive outcome when things do not go as expected. The quality of the decision
should be judged in view of the information available at the moment of making the
decision. In hindsight, anyone can be a genius. Formula (3) gives insight in the way
uncertainty could be dealt with. The way uncertainty is dealt with makes the
difference between quality investments and plain gambling.

4 An Example

Suppose that a company wants to build a product A. When looking into the future, one
might expect demand for two similar products A’ and A’’. When looking into the
design of these products, the three variants of the product could be built by using a
common part (called Acommon) and three extensions of this common part (Aext, A’ext, and
A’’ext). Suppose that an investment has to be made to separate the common part from
the extensions.
Assume that1:

1. Income from the products will be €4000 in the first year and €2000 in the second
to fourth year. After 4 years the products will not be sold anymore.

2. Each year at most €1000 can be spent on product development.
3. Developing the 3 products from scratch costs €1000 per product.
4. Fully preparing the architecture from the start for the A’ext, and A’’ext development

requires an initial investment of €600. This will delay the introduction of product
A with one year (missing the high income in the first year). After the architecture
has been fully prepared, completing product A’ and A’’ only costs €50 per
product. Since only a small development effort is needed, the two products can be
offered immediately when the market demands them (reduced time to market!!)

5. Partially preparing the architecture after product A has been released requires
investments of €400, which can be made in 2 consecutive years after product A
has been completed. When this investment is made, completing A’ and A’’ costs
only €300 per product.

What would be the right choice for the product line architecture roadmap?
Consider three architectural scenarios:

1. Just build product A: do not invest in future cost saving.
Total cost of the three products will be: €3000

1 Multiply cash flow numbers with any factor you like to make it more realistic.

 Modeling Architectural Value: Cash Flow, Time and Uncertainty 93

2. Partially prepare for A’ and A’’: first build product A, and make some
investments into the architecture in the next few years (after the product has been
put into the market).

Total cost of the three products will be: €1000 + €400 + 2*€300 = €2000.
3. Fully prepare for A’ and A’’: make the investment into the architecture from the

start (accept the initial cost + delayed product introduction).
Total cost of the three products will be: €1000 + €600 + 2*€50 = €1700.

When comparing the total development cost (as in formula (1)), architectural
scenario 3 would be the preferred scenario. But what happens when we take NPV and
strategic scenarios into account (as in formula (3))? Much depends on the expected
timing of the market demand for product A’, and A’’.

Assume the following strategic scenarios:

1. Product A’, and A’’ will be demanded in 2007 (likelihood: X%)
2. Product A’, and A’’ will be demanded in 2009 (likelihood: 100 - 30 - X%)
3. Product A’, and A’’ will never be demanded (likelihood: 30%)

If we vary the likelihood of strategic scenario 1 (X%), the expected NPV develops
as sketched in the chart below (see Appendix A for the numbers used in the example).

Expected NPV

10,000

12,000

14,000

16,000

18,000

10% 20% 40% 60% 70%

Probability of Strat. Scenario 1

E
xp

ec
te

d
 N

P
V

Juist Build A

Partially prepare for
A' and A'

Fully Prepare for A'
and A''

This chart indicates that it would be wise to just build product A if scenario 1 has a

probability of 70%. It also indicates that partially preparing can be expected to result
in a much higher NPV if scenario 1 would be improbable. Furthermore, it indicates
that the NPV of the three architectural scenarios is expected to be more or less the
same when the likelihood of scenario 1 would be high.

From this, one would conclude that it would be wise to partially prepare the
architecture, since the potential benefit from this can be high, and worst-case, the
outcome is almost as high as “just building product A”.

When just looking at the total development cost, architectural scenario 3 (fully
prepare the architecture) would have been the preferred scenario. When taking the
NPV-effect and three strategic scenarios into account, scenario 3 is not the preferred
scenario. Although this is a simplified example, the relevance of taking NPV-effects
and the probability of strategic scenarios into account is evident.

94 J.H. Wesselius

5 Conclusion

The combination of scenario definition, probability estimations and NPV-calculations
offers a framework that identifies the aspects to be considered for evaluating the value
of investments during product line roadmapping.

By means of an example, it has been shown that just counting the development cost
does not give the same result. The NPV-effect and the effect of considering the
probability of strategic scenarios improve the value estimation of product line
investments (and hence the quality of the business case for product line development),
which is an essential step in product line roadmapping.

References

[1] Sholom Cohen, Predicting When Product Line Investments Pays, The Software
Engineering Institute/ Carnegie Mellon University, Technical Note CMU/SEI-2003-
TN-017, http://www.sei.cmu.edu/publications/documents/03.reports/03tn017.html

[2] Economics of Software Product Lines,
http://www.sei.cmu.edu/productlines/economics_spl.html

[3] Klaus Schmid, A Quantitative Model of the Value of Architecture in Product Line
Adoption, in: Frank van der Linden, ed.: PFE-5: Fifth International Workshop on
Product Family Engineering, Siena, Italy, pp. 32-43,November 4-6 2003, Springer,
LNCS

[4] Pierre America, Dieter Hammer, Murugel T. Ionita, Henk Obbink, Eelco Rommes,
Scenario-Based Decision Making for Architectural Variability in Product Families,
accepted for SPLC 2004: Third Software Product Line Conference, Boston, MA, USA,
August 30-September 2, 2004

Appendix: Numbers Used for Example

For each architectural scenario, the expected cash flow for the three products is given
for the three strategic scenarios mentioned in the example. In the column “Total”, the
total NPV is given. These values are multiplied by the scenario probability as in
formula (3)

Just build A 2005 2006 2007 2008 2009 2010 2011 2012 NPV Total

Scenario 1 Build and sell A -1000 4000 2000 2000 2000 7817 19059

 Build and sell A' -1000 4000 2000 2000 2000 7375

 Build and sell A'' -1000 2000 2000 2000 3868

Scenario 2 Build and sell A -1000 4000 2000 2000 2000 7817 17823

 Build and sell A' -1000 4000 2000 2000 2000 6563

 Build and sell A'' -1000 2000 2000 2000 3442

Scenario 3 Build and sell A -1000 4000 2000 2000 2000 7817 7817

 Build and sell A' 0

 Build and sell A'' 0

 Modeling Architectural Value: Cash Flow, Time and Uncertainty 95

Partially prepare for product A' and A''

Scenario 1 Build and sell A -1000 4000 2000 2000 2000 7817 19059

 Build and sell A' -1000 4000 2000 2000 2000 7375

 Build and sell A'' -1000 2000 2000 2000 3868

Scenario 2 Build and sell A -1000 4000 2000 2000 2000 7817 21752

 Build and sell A' -100 -100 -300 4000 2000 2000 2000 6968

 Build and sell A'' -100 -100 -300 4000 2000 2000 2000 6968

Scenario 3 Build and sell A -1000 4000 2000 2000 2000 7817 7450

 Build and sell A' -100 -100 -183

 Build and sell A'' -100 -100 -183

Fully prepare for product A' and A''

Scenario 1 Build and sell A -1000 -600 2000 2000 2000 3477 20019

 Build and sell A' -50 4000 2000 2000 2000 8271

 Build and sell A'' -50 4000 2000 2000 2000 8271

Scenario 2 Build and sell A -1000 -600 2000 2000 2000 3477 18199

 Build and sell A' -50 4000 2000 2000 2000 7361
 Build and sell A'' -50 4000 2000 2000 2000 7361

Scenario 3 Build and sell A -1000 -600 2000 2000 2000 3477 3477

 Build and sell A' 0

 Build and sell A'' 0
Note: The discount rate used = 6% per year.

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 96 – 101, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Knowledge-Based Perspective for Preparing the
Transition to a Software Product Line Approach

Gerardo Matturro1 and Andrés Silva2

1 Universidad ORT Uruguay, Campus Centro, Cuareim 1451,
11200 Montevideo, Uruguay

gerardo.matturro@universidad.ort.edu.uy
2 Universidad Politécnica de Madrid, Campus de Montegancedo,

28660 Boadilla del Monte, Madrid, Spain
asilva@fi.upm.es

Abstract. The adoption of a Software Product Line approach implies a series of
changes in the way an organization develops software and runs its whole
business. This change in the organization’s business strategy can lead to
knowledge gaps between the knowledge the organization has at present and the
knowledge it must have in the future in order to implement its new strategy. In
this article we propose to consider the transition to a Product Lines approach as
a Knowledge Management problem, and we also introduce a method for
identifying and assessing the aforementioned knowledge gaps.

1 Introduction

The adoption of the product line approach for software development involves changes
of magnitude not only in the way an organization develops software, but also in many
other areas of its business activities. To succeed with Software Product Lines an
organization must alter its technical practices, management practices, organizational
structure and personnel and business approach [1].

The differences between what an organization is already doing about its business
and what it will have to do in the future, commonly called “strategy gap”, can lead to
a “knowledge gap” between what the organization knows at present and what it must
know in the future to implement its new strategy [2]. In preparing its transition to a
product line approach, an organization should identify and assess these knowledge
gaps, and take some actions in order to acquire or develop the knowledge needed to
close them, so this enhanced set of knowledge and skills becomes aligned with its
new business strategy. From this point of view, preparing the transition to the product
line approach can be considered as a knowledge management problem.

This article is structured as follows. In section 2 a few definitions about
“knowledge” are introduced and a relationship between different kinds of knowledge
in the field of software engineering and the practice areas of the SEI’s framework for
product lines is presented. In section 3, we introduce Zack’s framework for analysing
the relationship between knowledge and business strategy and we show how it can be
applied to the specific situation of the transition to the product line approach. In

 A Knowledge-Based Perspective for Preparing the Transition 97

section 4 we present our proposed method to identify and assess the potential
knowledge gaps derived from the adoption of the product line approach. Finally, in
section 5 we present some topics we consider that require further research.

2 Product Lines Knowledge

In the Knowledge Management literature there is a broad variety of definitions and
characterizations about what knowledge is. Probst et al. proposes that knowledge is
the whole body of cognition's and skills individuals use to solve problems [3].
Bollinger and Smith define knowledge as the understanding, awareness or familiarity
acquired through study, investigation, observation or experience over the course of
the time [4]. Knowledge can be classified into different categories and according to
different criteria [2], [5]. In the field of software engineering, Rus et al. establish that
depending on the set of activities in software engineering to which knowledge
pertains, there can be different kinds of knowledge, such as: organizational,
managerial, technical and domain knowledge [6]. These kinds of knowledge can be
put in correspondence with the three categories of practice areas defined in the SEI’s
Framework for Software Product Lines Practices [7], as shown in Table 1:

Table 1. Kinds of knowledge related with the three categories of product lines practice areas

Software

Engineering
Technical

Management
Organizational
Management

Organizational Knowledge X
Managerial Knowledge X
Technical Knowledge X
Domain Knowledge X

Thus, the 29 practices areas of the SEI’s Framework can be seen as a refinement of
those four classes of knowledge, in the sense that they provide a more detailed
approximation about what type of knowledge we refer to when we talk about
“managerial knowledge” or about “domain knowledge”. These practice areas will
guide the three main activities our method is structured on: defining the knowledge
the organization must have to implement its product line strategy, establishing the
knowledge the organization already has, and identifying the knowledge gaps.

3 Aligning Knowledge with a Product Line Strategy

When an organization defines or redefines its business strategy, it will need a set of
knowledge and skills that enable the organization to put in practice its new strategy.
The strategic choice an organization makes regarding technology, markets, product,
services and processes has a direct impact on the knowledge, skills and competences
that it needs to compete in its intended markets [8]. As a consequence, those
knowledge, skills and competences became strategic as they are necessary for the
organization to develop its intended strategy and to deploy it at the operational level.

98 G. Matturro and A. Silva

Zack has presented a framework for analysing the relation between knowledge and
business strategy [2]. According to Zack, the gap between what an organization must
do to compete and what it actually is doing represents a strategic gap. At the same
time, underlying an organization’s strategic gap there is a potential knowledge gap.
That is, given a gap between what an organization must do and what it can do, there
may also be a gap between what the organization must know and what it actually
knows. Then, after defining its new business strategy and having performed a
strategic evaluation of its knowledge-based resources and capabilities, an organization
can determine which knowledge should be developed or acquired.

The adoption of the product line approach is a special case of strategic change
because it is not just a different technical way to develop software but also a different
way of running the whole business, and involves changes in many other areas of its
business activities. We can, then, apply Zack’s framework to this situation, as
depicted in Figure 1:

Fig. 1. Knowledge gaps derived from the adoption of the product line approach

To identify the knowledge gaps we will base our method on the 29 practice areas
of the SEI’s Framework for Software Product Lines Practices. Given any of these 29
practices areas, identifying the knowledge gaps for that area means to identify what
the organization knows and what it must know in relation to that practice area.

4 Product Lines Knowledge Assessment

For each practice area, there exist a set of concepts, methods and tools that represent
the knowledge the practitioners use when they perform the different activities related
to that practice area. This knowledge can be classified in the following three
categories: General: knowledge and practices that are considered generally accepted
in relation to that practice area, Particular: knowledge and practices developed and
applied by the proper organization and that are variations or “customizations” of the
ones included in the previous category, and Specific: knowledge and practices that are
specific to the product line that the organization is going to start.

Following the definition of knowledge given by Bollinger and Smith [4], to define
what to assess we will focus our attention on two elements that are: formal training
and study, and working experience. To assess the breadth and depth of the potential

 A Knowledge-Based Perspective for Preparing the Transition 99

knowledge gaps we propose the following four-point scales (based on a scale
presented by Mayo [9]) to rate formal Training & Study and Working Experience:

Table 2. Four-point scales to rate Training & Study and Working Experience

Level Training & Study Working Experience
1 Has a rudimentary knowledge of the field Less than 1 year
2 Is able to discuss and work competently Between 1 and 2 years
3 Is one to whom work colleagues turn to advice Between 2 and 5 years
4 Is known within the organization for her/his expertise More than 5 years

4.1 Defining What the Organization Must Know

With the expression “what the organization must know” we mean the knowledge the
organization must have and the practices the organization must apply in order to
properly initiate and evolve its planned product line.

The template for a practice area Knowledge Catalogue is shown in Figure 2:

Practice area: Practice area name

…

T & S Exp. T & S Exp. T & S Exp. T & S Exp.
General

PA.g.1
PA.g.2
 :

Particular
PA.p.1
PA.p.2
 :

Specific
PA.s.1
PA.s.2
 :

E
m

pl
oy

ee
 1

E
m

pl
oy

ee
 2

E
ff
ec

ti
ve

L
ev

el

R
eq

u
ir

ed

le
ve

l

Fig. 2. Template for the Knowledge Catalogue and Practice Areas Organizational Profile

The PA.x.y represents knowledge elements such as concepts, methods and
techniques for that practice area that the organization considers it will need to initiate
its product line. The columns T&S (Training and Study) and Exp. (Experience) under
the Required Level heading are the places where the expected required levels of
knowledge for each knowledge element are initially set. These initial levels can be
adjusted later, as the product line evolves and more insight is gained about it.

4.2 Establishing What the Organization Knows

With the expression “what the organization knows” we mean the knowledge the
organization has and the practices the organization applies in its current way of
developing software and running its business.

100 G. Matturro and A. Silva

To identify this knowledge, we propose to take a bottom-up approach (from the
individual to the organizational level) to build an inventory of the knowledge and
experience the employees have, taking into account the knowledge elements included
in the Knowledge Catalogue. To build this inventory, two steps must be followed:

1. Construction of the General Personal Profile of each employee
2. Construction of the Practice Areas Organizational Profile

4.2.1 The General Personal Profile
The General Personal Profile is a record of the Training & Study events (courses,
seminaries, etc.) and of the Working Experience events (roles in a project, position in
a company) an employee has taken part. To gather this information, a set of forms
based on the template shown in Figure 3 can be given to each employee. For each
event, the practice areas it applies are recorded by marking in the corresponding cell.

General Personal Profile
Name: employee's name

A
rc

ht
ec

tu
re

 D
ef

in
iti

on

A
rc

hi
te

ct
ur

e
E

va
lu

at
io

n

C
om

po
ne

nt
 D

ev
el

op
m

en
t

C
O

T
S

 U
til

iz
at

io
n

M
in

in
g

E
xi

st
in

g
A

ss
et

s

R
eq

ui
re

m
en

ts
 E

ng
in

ee
rin

g

S
of

tw
ar

e
S

ys
te

m
 In

te
gr

at
io

n

T
es

tin
g

U
nd

er
st

an
di

ng
 R

el
ev

an
t D

om
ai

ns

C
on

fig
ur

at
io

n
M

an
ag

em
en

t

D
at

a
C

ol
le

ct
io

n,
 M

et
ric

s
an

d
T

ra
ck

in
g

M
ak

e/
B

uy
/M

in
e/

C
om

m
is

si
on

 A
na

ly
si

s

P
ro

ce
ss

 D
ef

in
iti

on

S
co

pi
ng

T
ec

hn
ic

al
 P

la
nn

in
g

T
ec

hn
ic

al
 R

is
k

M
aa

ng
em

en
t

T
oo

l S
up

po
rt

B
ui

ld
in

g
a

B
us

in
es

s
C

as
e

C
us

to
m

er
 In

te
rf

ac
e

M
an

ag
em

en
t

D
ev

el
op

in
g

an
 A

cq
ui

si
tio

n
S

tr
at

eg
y

F
un

di
ng

La
un

ch
in

g
an

d
In

st
itu

tio
na

liz
in

g

M
ar

ke
t A

na
ly

si
s

O
pe

ra
tio

ns

O
rg

an
iz

at
io

na
l P

la
nn

in
g

O
rg

an
iz

at
io

na
l R

is
k

M
an

ag
em

en
t

S
tr

uc
tu

rin
g

th
e

O
rg

an
iz

at
io

n

T
ec

hn
ol

og
y

F
or

ec
as

tin
g

T
ra

in
in

g

Training and Study events
Course 1
Course 2
 :

Working Experience events
Project 1
Project 2
 :

Product line practice areas

Fig. 3. Template for the General Personal profile

4.2.2 Construction of the Practice Areas Organizational Profile
The information contained in the employees’ General Personal Profiles is the base for
building the Practice Areas Organizational profile. These profiles are a more detailed
view of the previous ones, taking into account the knowledge elements defined in the
Knowledge Catalogue. The corresponding template is also shown in Fig. 2.

Given a practice area, only the employees that recorded a Training & Study event
or an Experience event in his/her General Personal profile must be included. For each
employee, the corresponding cells at the intersection of each knowledge element are
the places where his/her knowledge levels are set. To make a better judgment about
these levels, detailed information can be gathered by conducting an interview with
each the employee, in which the interviewee explains the characteristics of the
training events or the specific task he/she was assigned in the previous projects.

The column headed Effective Level is where the overall level for the practice area
is established.

4.3 Identifying the Knowledge Gaps

The identification of the knowledge gaps for each practice area is made by comparing
the Required levels defined in the Knowledge Catalogue and the Effective levels

 A Knowledge-Based Perspective for Preparing the Transition 101

established in the Practice Areas Organizational profile. By making this comparison,
both for Training & Study and for Experience, the knowledge elements for which the
effective level is lower than the required level correspond to the knowledge gaps we
are looking for.

5 Further work

We are already working on the following subjects that, from the previous exposition,
we consider deserve further analysis and research.

When an organization decides to adopt the product line approach, it does it with
specific business goals in mind [1]. The question here is what influences these
business goals can have in the required levels that are initially set for each knowledge
element included in the Knowledge Catalogue. Along with this, a more accurate way
to define those expected required levels will lead to a more accurate assessment of the
knowledge gaps found, which is the main goal of the proposed method.

The second topic we want to consider here refers to other forms of knowledge an
organization usually have such as the knowledge embedded in documents or
repositories as well as in organizational routines, processes, practices and norms [10].
These processes, practices and routines will also be affected by the adoption of the
product line approach and for them, the corresponding knowledge gaps also need to
be identified, assessed and resolved.

References

1. Northrop, L.: SEI’s Software Product Line Tenets. IEEE Software 4 (2002) 32–40
2. Zack, M.: Developing a Knowledge Strategy. California Management Review 3 (1999)

125–145
3. Probst, G., Raub, S., Romhardt, K: Managing Knowledge, Chichester, J. Wiley & Sons

Ltd. (2000)
4. Bollinger, A., Smith, R.: Managing Organizational Knowledge as a Strategic Asset.

Journal of Knowledge Management 1 (2001) 8–16
5. Wiig, K.: Knowledge Management Methods. Arlington, Schema Press (1995)
6. Rus, I., Lindvall, M., Sinha, S.: Knowledge Management in Software Engineering.

Technical Report, New York, DoD Data Analysis Center for Software (2001)
7. Clements, P., Northrop, L.: Software Product Lines. Practices and Patterns. Boston,

Addison-Wesley (2002)
8. Tiwana, A.: The Knowledge Management Toolkit. Upper Saddle River, Prentice Hall

(2002)
9. Mayo, A.: The Human Value of the Enterprise. London, Nicholas Brealey Publishing

(2001)
10. Davenport, T., Prusak, L.: Working Knowledge. How Organizations Manage what they

Know. Boston, Harvard Business School Press (1998)

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 102 – 112, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Comparison of System Family Modeling Approaches

Øystein Haugen1, Birger Møller-Pedersen1, and Jon Oldevik2

1Department of Informatics, University of Oslo, Norway
{oysteinh, birger}@ifi.uio.no

2Sintef ICT, Oslo, Norway
jon.oldevik@sintef.no

Abstract. A reference model for the comparison of system family modeling
approaches is presented. Three main approaches to system family modeling are
illustrated with a simple example and compared relative to the reference model.

1 Introduction

Many of the challenges of system family engineering are organizational [1], and for
these organizational issues, comparisons of approaches seem to be based upon an
agreed set of criteria (or framework/reference model) for system family engineering
processes.

When it comes to the modeling of system families, there is no such agreed
comparison framework – no established reference model for comparing and
evaluating approaches. In [2] a taxonomy for software product lines is presented, but
it is not used to compare different approaches.

This paper presents a reference model for comparing system family modeling
approaches, applies it to three broad categories of approaches, and compares the
different approaches using the reference model.

2 Reference Model

The reference model makes a distinction between the generic sphere and the specific
sphere. In the generic sphere we have Feature Models and System Family/Product
Line models, and within the specific sphere we have Feature selection and
System/Product models (Fig. 1).

A Feature Model is a model of the potential features of Systems within the System
Family, and it will typically be expressed in terms of possible feature selections. The
System Family model is a model corresponding to the potential features. The
Production is a process that produces a specific System model from a System Family
model and a selection of features from the Feature Model.

The reference model is restricted to cover only models and the process that
produces models, i.e. the reference model does not cover variations controlled at
execution time.

Note that if we had system family engineering with just programming (i.e. no
modeling), we would have the situation illustrated in Fig. 2.

 Comparison of System Family Modeling Approaches 103

Production

Feature selection

System / Product
System Family /

Product Line

Feature Model

Generic Specific

Fig. 1. Separation of spheres in model-driven system family engineering

Pre-processor

Pragmas /
Compiler directives

ProgramGeneric program /
Templates

Informal Feature
Model

Generic Specific

Fig. 2. Separation of spheres in programming-oriented system family engineering

This is close to how generative programming [3] is illustrated. The Production is a
generator (or pre-processor) and the feature selection takes the syntactic form of
pragmas (compiler directives).

3 The Approaches

We identify three approaches to the modeling of system families. The main defining
distinction between the approaches is the kind of language used to model the system
family. System families may be modeled by some standard, general language using
generic mechanisms of that language. Alternatively the variabilities of a system
family may be modeled through annotations to a general language and resolved at
system production time. Finally a system family may be modeled by a dedicated
domain-specific language. The three different approaches are ideal types, and we shall
see that there may be approaches that do not fit exactly these three categories. A
pragmatic approach will sometimes use a combination of these three categories.

3.1 Using Standard Languages: Framework / Configuration

This is a category of approaches where domain concepts are represented by
predefined components/classes in a standard (modeling) language, and System
Families are modeled by frameworks and composition of predefined components with
well-defined interfaces [4]. System models are obtained by specializing and
configuring a framework, composing specialized components and binding generic
type parameters.

104 Ø. Haugen, B. Møller-Pedersen, and J. Oldevik

As shown in Fig. 3, a Requirements Model represents the Feature Model, and the
Feature Selection is expressed through Requirements Resolution. The Framework /
configuration approach will make a generic System Family model that seeks to cover
the Requirements Model. The process of specialization/ composition/ configuration in
Fig. 3 is not an automatic process driven by the requirements resolution, but rather a
modeling process.

Specialization/
Composition/
configuration

Requirements
resolution

System
Generic system on

Framework & Library

Requirements
Model

Generic Specific

influence

Fig. 3. Framework / configuration approach

The Framework / configuration approach models variations only by means of
existing mechanisms in the modeling language, such as composition, specialization,
and (template/generic) parameters.

3.2 Using Annotations: Family-as-the-Union-of-All-Systems

This approach is characterized by having a System Family model containing model
elements representing variability often depicted by annotations to model elements of a
base language. In UML such annotations are called “stereotypes”. Feature Models are
sometimes called Decision Models, and Feature Selection is called Resolution Model.
There is a tight relation between the variability model elements and elements of a
Decision Model. The Decision Model is used as the basis for the feature selection in
the form of a Resolution Model where the decisions described by the Decision Model
have been resolved. The approach is illustrated in Fig. 4.

Generator /
Selector

Resolution Model

SystemSystem Family

Decision Model

Generic Specific

decision

Variation point

Fig. 4. Family-as-the-union-of-all-systems

 Comparison of System Family Modeling Approaches 105

A System Family model is a model that is the union of all potential System models,
marking some elements of this model as variable model elements. The specific system
models are generated, i.e. there is no modeling involved in producing the system
models. The system family model is not executable, but the generated systems may be
executable.

Note also that Decision Models may be seen as separate from Feature Models. As
the term “decision” implies some kind of process, it is possible to view Decision
models as the combination of feature models (defining requirements) and strategies
(recipes for how to reach resolutions).

This approach has explicit variability as part of the Family model, and the Family
model has model elements that are mapped to elements of the Feature Model. While
the Framework / configuration approach requires that one consults the Family model
and potential specializations, components or parameters in order to get a picture of all
the variations, the Family-as-the-union-of-all-systems approach will produce Family
models where the variations can be seen by inspecting one model.

3.3 Using Special Domain Specific Languages

The definition and use of Domain Specific Languages (DSLs) have been proposed as
the solution to product line modeling [5, 6]. While general modeling languages (and
programming languages) represent domain concepts by means of libraries of
classes/components, DSLs represent these as language constructs. There is thus really
no System Family model, but the DSL gives the potential of making models that are
guaranteed to adhere to restrictions that are wise to have in a domain (Fig. 5).

Modeling in
Domain Language

System specific
requirements

System in
Domain Language

Domain Language

Domain
Knowledge

Generic Specific

influence

Fig. 5. Domain specific language approach

The primary input to the DSL is the domain knowledge, and not a specified feature
model. A System Family is thereby the set of all systems that may be modeled with
this language. This set will potentially be a larger set than the union of all system
models (see 0). In this approach Production amounts to Modeling in the DSL, i.e. it is
not automatic, but pure modeling.

This approach has no special means for modeling variation, except for the
capabilities built into the DSL. Variation point elements are not modeled, but
potential features are represented by the possibilities (and constraints) of the DSL.

106 Ø. Haugen, B. Møller-Pedersen, and J. Oldevik

4 The Comparison

For our comparison we use our reference model (Fig. 1) as guide. We start with the
Feature selection and assess how commonalities and variabilities are handled in the
different approaches. We then turn to the system family and its development and
consider how the production of actual systems is performed. Finally, we review how
the different approaches handle systems that span more than one domain.

As seen from the description of the three different approaches, they are rather
different when it comes to how variations are modeled and how features are
represented in the Family models. To make this clearer and to illustrate our analysis
we use a toy example of specifying a digital watch with some mandatory components
(buttons, display) and one variable part, namely a speaker that may be either a plain
speaker or a polyphonic speaker. The example has been used in the Families project
[7].

4.1 How Are Variabilities and Commonalities Modeled?

Complimentary to modeling variability is the modeling of commonality. The three
different approaches have distinct attitudes toward defining properties common to all
systems.

Table 1. How are commonalities and variabilities modeled?

Framework /
configuration

Family-as-the-union-of-
all-systems

Domain Specific Languages

The system family model
is a model of the common
properties of all systems.
This model is also a valid
system model.

Implicitly defined by all
the model elements that
are mandatory.
This model may not be a
valid system model.

As there is no system family
model, commonalities are
defined through the semantics
of the DSL constructs

Variability modeled by
generic mechanisms of the
language

Variability modeled as
annotations to a standard
base language

Variability is modeled through
specific language mechanisms
in the created language

In Fig. 6 we have shown the watch model according to the Framework /
configuration approach. In figure a) we show the general watch framework. The
speaker is given only to be a part typed by an abstract class. Only necessary common
properties may be modeled. Figure b) shows the specific specialization that may
appear later as part of the modeling of the specific system.

The Framework / configuration approach models the commonalities explicitly as a
system with default structure and default behavior. Fig. 6a) gives the structure of all
watches; and if one were to make a system according to the Watch family, one would
get a watch with a Button, a Display and a Speaker. Provided that e.g. Button is
defined to have some default behavior that is executed when pressed, this behavior
will be part of such a watch. As specified here, the Speaker will not specify any
default behavior, but only a required interface towards the audio port, while the
different behavior of speakers are defined in the two subclasses.

 Comparison of System Family Modeling Approaches 107

Watch

buttons

visual

audio

:Button[1..*] :Display

:Speaker

:Controller

a)

Speaker

PolyphonicSpeaker PlainSpeaker

b)

Fig. 6. Watch System family with framework / configuration

In Fig. 7 we have sketched how a small extract of the digital watch may be
modeled using the Family-as-a-union-of-all-systems approach. Figure a) shows a
UML-like composite structure modeling the generic system family where the choice
between a plain speaker and a polyphonic speaker has been made explicit. The feature
model shown in figure b) depicts the generic decision model in a notation given in [3]
indicating that one choice exactly out of the given alternatives shall be chosen.

In Fig. 8 we have shown how the watch structure could have been modeled in a
DSL. The DSL itself is not shown in the figure, but it would contain a palette of
concepts and their interrelationships. For a more elaborate description of a watch in a
DSL, see Pohjonen and Kelly [8].

Watch

buttons

visual

audio

:Button[1..*] :Display:Controller

«variant»
:PlainSpeaker

«variant»
:PolyphonicSpeaker

«alternative» Speaker

a)

Speaker

PolyphonicSpeaker PlainSpeaker

<1-1>

b)

Fig. 7. Digital watch with Family-as-a-union-of-all-systems

B2

PlainSpeaker

LCD display

B1

Watch

WController

Fig. 8. Watch modeled in a DSL

108 Ø. Haugen, B. Møller-Pedersen, and J. Oldevik

4.2 Support for Iterative and Incremental System Family Development?

In order for an approach to support iterative and incremental development, it shall be
possible to analyze (formally, testing, reviewing, etc) system family models, have
partial system (product) models, and to handle unforeseen requirements/features.

4.2.1 Can the System Family Model Be Analyzed?
By being analyzed we mean that it is possible to establish certain properties of the
system family that will prevail in all the systems derived from it.

If the system family model cannot be analyzed, analysis has to be repeated for each
specific system model. In analysis we include all kinds of techniques that establish
some properties, both formal analyses, reviewing, and testing.

Table 2. Can the system family model be analyzed?

Framework / configuration Family-as-the-union-of-
all-systems

Domain Specific
Languages

Yes: the family model is a model
of a general system with default
structure and behavior specified
and can as such be analyzed, e.g.
by executing the model.
Specialization and binding of
parameters may ensure that
properties of the family are
preserved

No, the family model
with all variations and all
model annotations
included cannot be given
an execution semantics
and therefore cannot be
analyzed

No, as there is no system
family model, it cannot
be analyzed

The two extremes here are the Family-as-the-union-of-all-systems approach and
the Framework / configuration approach. The illustrative model in the Framework /
configuration approach is in Fig. 6a). The Speaker class defines all the common
properties of all speakers and the interfaces to the rest of the watch architecture. The
Speaker may either be abstract, in which case analyzing the family model will simply
check that interfaces match the rest of the architectures, or it may have some minimal
behavior, in which case the effect of that behavior can be analyzed, too.

In the Family-as-the-union-of-all-systems approach, illustrated in Fig. 7, the total
family model with all possible variations is modeled in one system familymodel. The
resulting model contains information covering more than one system. The system
family model can, therefore, not be analyzed using means of analysis used in single
system development. Rather, additional analyses are necessary to analyze system
family models that take into account the generic nature of the models. Another option
is to first generate the specific system models, and then use single-system analyses on
the resulting system model. This is similar to traditional macro-expansion and other
generic descriptions that are in principle not meaningful until the generics have been
bound.

Although the DSL approach does not have the notion of family model so that it
cannot be analyzed, it may still benefit from analysis performed on the DSL and its
implementation. This is in fact one of the arguments in favor of DSLs: domain experts

 Comparison of System Family Modeling Approaches 109

and language implementation experts together guarantee that users of the DSL get the
best implementation of the right concepts.

4.2.2 Are Partial System Family Models Supported?
Partial system models are representations of a system family with a smaller scope
than the original system family model, i.e. the space of variability and thus the space
of possible different kinds of systems is narrowed. This is very useful in order to
specify categories of systems that are more specific than the complete system family
yet more specific than a single system.

Table 3. Are partial system family models supported?

Framework /
configuration

Family-as-the-union-of-
all-systems

Domain Specific Languages

Yes. Partial system models
are specified as
specializations and
extensions of the system
family model. There can be
arbitrary levels of
specializations. There is
low risk of model
inconsistencies.

Yes. A partial system model
can be given as a new
system family model (a
copy), in which some
variabilities have been
resolved, thus defining a
more limited space of
systems. There is a risk of
model inconsistencies.

No. Since there is no system
family model, partial models
cannot be specified as such.
A similar effect can,
however, be achieved by
constraining the domain-
specific language for the
specific case.

Partial system models can be supported both in the Framework / configuration and
the Family-as-the-union-of-all-systems approach. In the latter approach, however,
there is no established way of handling refinements of system family models, the risk
being inconsistent model refinements. In the former approach, traditional mechanisms
for specialization and extensions are used, facilitating consistent model refinements.

4.2.3 How Are Unforeseen Features Handled (Maintenance, Evolution)?
Maintenance and evolution are important parts of systems’ development. For system
families this means that it is important to handle unforeseen features.

Table 4. How are unforeseen features handled (maintenance, evolution)?

Framework / configuration Family-as-the-union-of-all-
systems

Domain Specific
Languages

The unforeseen features are
just added to the model, by
specialization or composition

The system family model
has to be changed, or one
shall allow additions to the
automatic generated system
model

If they can be expressed in
the DSL, express them
there.
If not expressible, make a
new language.

Note that the feature model has to be changed in all three approaches.
Unforeseen features come in two variants: features that belong to the family and

features that are required for a specific system. The Framework / configuration
approach allows adding properties for specific systems, while the Family-as-the-

110 Ø. Haugen, B. Møller-Pedersen, and J. Oldevik

union-of-all-systems approach treats these in the same way: as family features. As
indicated above, it is with the Family-as-the-union-of-all-systems approach possible
to add properties after the system model has been generated, but it is not wise. The
Framework / configuration approach may choose to let the unforeseen properties
become properties of a new (specialized) family model, instead of just of a specific
system model.

The need for making a new domain specific language for the purpose of supporting
new features reveals some challenges. Can new constructs be added without
corrupting existing constructs (are they orthogonal or are there any dependencies)?
Can a DSL be defined as a specialization of another (inheriting the semantics of the
super language and adding what is needed for the new features)?

4.3 The Production of Individual Systems

Does making specific systems involve the professional skills of modeling or simply
taking decisions based upon the feature model and then let the system model be
generated? A follow-up question would be whether there is a way after the generation
where more model elements can be added?

Associated with the production of the individual systems is also another question:
What kind of code generator may be used on the resulting system model?

As indicated in the table above, two of the approaches are similar when it comes to
how they obtain specific system models. Both the Framework / configuration
approach and the DSL approach model the specific systems: The Framework /
configuration approach models them by specializing frameworks, composing
components and/or applying actual parameters to parameterized models, while with
DSLs they are in principle modeled from scratch, although this approach may also use
predefined components.

Along the same distinction, relying on generation of specific system models (as
with the Family-as-the-union-of-all-systems approach), one should rather not to this
generated system model add model elements for these specific systems, as this will
cause problems if repeated generations are required: The generated system models
should not be touched. The other two approaches have a different approach: In
principle, a DSL model is a specific system model (i.e. all model elements are added),

Table 5. Are individual systems modeled or are they generated?

Framework / configuration Family-as-the-union-of-
all-systems

Domain Specific
Languages

Modeled in the standard
language, using pre-defined
domain specific elements and
framework.

Generated from applying
a decision model to the
system family model.

Modeled in the domain
language

Model elements may be added

More model elements
should not be added.

Model elements may be
added.

From system model, standard
code generator may be used.

From the system model,
standard code generator
may be used.

From the system model, a
tailored code generator is
used.

 Comparison of System Family Modeling Approaches 111

while specialization and composition encourage the adding of specific model
elements (specializations inherit the general family properties and may add properties,
composition is often more than just the composition of components).

When one has obtained the System model, the Family-as-the-union-of-all-systems
and the Framework / configuration approaches are similar in that they can use
standard code generators. Models in the Family-as-the-union-of-all-systems approach
will often be made in some standard modeling languages with annotations for
variation model elements (e.g. stereotypes in UML). In the system models these
annotations are gone, and therefore standard code generators may be used.

4.4 Systems Spanning More Than One Domain

System family engineering is often equated with domain engineering, and most often
a system family belongs to one domain. We are here not considering user interfaces
and interfaces to some underlying data repositories as separate domains (could be
called implementation domains), so in order for a system family to span more than
one domain, the main application model has to be based upon concepts from more
than one ‘real’ domain.

The reason for asking this question is that conventional systems often span more
than one domain, so the answer to this question will tell how easy it is for the
approach to cater for large classes of systems.

Table 6. What about systems spanning more than one domain?

Framework / configuration Family-as-the-union-of-all-
systems

Domain Specific
Languages

Use classes/components from
different libraries/frameworks

Use classes/components from
different libraries/frameworks

Contrary to the idea of
DSLs

For the DSL approach this is of course only a problem if there are existing DSLs
for the different domains. It will be a (costly) solution to define a DSL from scratch
from each combination of domains.

5 Summary and Conclusions

A reference model for the comparison of system family/product line modeling has
been presented. The application of this reference model to three main approaches has
revealed that these approaches have different qualities regarding essential issues in
systems modeling.

Some of the most distinct differences are: the DSL approach is the only approach
that does not even have a System Family Model (but rather a language that allows
potentially many systems to be modeled); the Framework / configuration approach is
the only approach that allows for analysis of Family Models; the Family-as-union-of-
all-systems is the only approach in which all the variations are present in the system
family model.

112 Ø. Haugen, B. Møller-Pedersen, and J. Oldevik

Some of the similarities are: The Framework / configuration and Family-as-the-
union-of-all-systems approaches can benefit from standard modeling languages and
tools (e.g. code generators), while the DSL approach has to make specific tools for
each language.

A concrete system family may apply more than one ideal approach. A system
family made with annotations may also benefit from generic and component
mechanisms of the base language, and thereby apply the framework/ configuration
approach. A DSL may include generic and component mechanisms, and even
annotations to be resolved by a preprocessing phase may be added to such a language.
It is reasonable, however, that there is one dominant approach in a given concrete
system family.

References

1. Clements, P. and L. Northrop, Software Product Lines: Practices and Patterns. 2002:
Addison Wesley Professional. 608.

2. Krueger, C.W. Towards a Taxonomy for Software Product Lines. in 5th International
Workshop, PFE 2003,. 2003. Siena, Italy: Springer Lecture Notes in Computer Science
LNCS 3014 (2004) 3-540-21941-2.

3. Czarnecki, K. and U. Eisenecker, Generative Programming: Methods, Tools, and
Applications. 2000: Addison-Wesley Professional. 864.

4. D'Souza, D.F. and A.C. Wills, Objects, Components and Frameworks with UML: The
Catalysis Approach. 1998: Addison-Wesley. 785.

5. Greenfield, J. and K. Short, Software Factories. 2004, Indianapolis: Wiley. 666.
6. Gray, J., M. Rossi, and J.-P. Tolvanen, eds. Domain-Specific Modeling with Visual

Languages. Journal of Visual Languages & Computing. Vol. 15, Issues 3-4. 2004, Elsevier.
7. Families, Families. 2004, http://www.esi.es/en/Projects/Families/. p. Eureka Σ! 2023

Programme, ITEA project ip02009.
8. Pohjonen, R. and S. Kelly, Improving productivity and time to market, in Dr. Dobb's

Journal. 2002.

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 113 – 123, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Cost Estimation for Product Line Engineering
Using COTS Components

Sana Ben Abdallah Ben Lamine1, Lamia Labed Jilani2,
and Henda Hajjami Ben Ghezala3

Laboratoire Riadi-Gdl, Ecole Nationale des Sciences de l’Informatique,
Campus Universitaire la Manouba, La Manouba, 2010, Tunisia

1 Sana.Benabdallah@riadi.rnu.tn, 2 Lamia.Labed@isg.rnu.tn
3 Henda.BG@cck.rnu.tn

Abstract. Economic models for reuse are very important to organizations
aiming to develop software with large scale reuse approaches. In fact, the initial
investment is so important that it can discourage managers to commit to those
approaches. Thus, economic models can help them to assess the worthiness of
such an investment.

Product Line Engineering (PLE) seems to be an attractive reuse approach in
matter of product quality and time-to-market. Using Commercial Off The Shelf
(COTS) in a PLE approach may have a positive impact.

This paper reports on the need for an economic model to quantify the
predicted benefits of the PLE software development with the use of COTS
components. We introduce a Model for Software Cost Estimation in a Product
Line Engineering approach that we denote SoCoEMo-PLE 2. This latter
includes the usage of COTS components. The potential benefits of the model
are described.

1 Introduction

Many economic models are achieved to quantify software development costs in reuse.
The most known models for reuse are studied in [1, 2, 3, and 4]. The measurement of
the Return On Investment (ROI) of a project using a Product Line Engineering (PLE)
approach is given in [5]. Since PLE seems to be very attractive in matter of quality
and time to market, and since very few models deal with PLE, we are particularly
interested in economic models that help to estimate the pretended benefits achieved
by the adoption of a software development approach using product lines.

In our previous work on cost estimation models for PLE [6, and 7], we based our
research on two models: the integrated cost estimation model for reuse, presented in
[3, and 4], and Poulin’s economic model for PLE, presented in [5]. We chose
specifically those models because the first is proved to be a generic model for reuse
and seems to be applicable to PLE after some adaptations, while the second proposes
a global formula that estimates the ROI of a project using PLE. We obtained the
SoCoEMo-PLE model which is a cost estimation model for a product line engineering
approach, where all the reusable components are supposed to be developed internally
in the corporation.

114 S.B.A.B. Lamine, L.L. Jilani, and H.H.B. Ghezala

In the present work, there are two fundamental assumptions. The first one is that a
reuse organization contains four engineering cycles that feed costs and benefits into
each other: the component, the domain, the application, and the corporate engineering
cycles. The second one is that components of the product line can include COTS
components.

The contribution of this paper is a model for software cost estimation in a PLE
software development approach that uses COTS components.

In the next section we provide a concise background on economic models for reuse
that are the basis of this work. The following two sections define the model
SoCoEMo-PLE 2, and give a synthesis and potential benefits respectively. We
conclude with a look at how this model can be bettered and even extended to the PLE
development that uses PLE.

2 Background: Software Cost Estimation in Reuse

2.1 The Integrated Cost Estimation Model for Reuse

The integrated cost estimation model for software reuse, presented in [3, and 4] is
characterized by:

Variety of Investment Cycles. The model defines four distinct investment cycles and
identifies how they feed into each other: The corporate engineering cycle, the domain
engineering cycle, the component engineering cycle and the application engineering
cycle. In fact, there are four parties in the software reuse process: the corporate
management, which has a stake in seeing the reuse program reap benefits for the
corporation; the domain engineering team, which has a stake in seeing its domain
engineering products reused; the application engineering teams, which has a stake in
producing applications with low cost, high quality, and short time to market; and the
component developers, who have a stake in seeing their components reused widely.

Variety of cost factors. The cost factors used to define the various economic functions
are quantified for each investment cycle and they include:

• Investment Cycle (Y), in years.
• Start Date of the investment (SD).
• Discount Rate (d), which is an abstract quantity that reflects the time value of

money.
• Investment Cost (IC), in person months (PM).
• Periodic Benefits (B(y)), at year y, for SD+1 y SD+Y, in PM.
• Periodic Costs (C (y)), at year y, for SD+1 y SD+Y, in PM.

Variety of Economic Functions. The economic functions used to assess the worthiness
of the investment after the estimation of cost factors are: Net Present Value (NPV),
Return on Investment (ROI), Profitability Index (PI), Average Rate of Return (ARR),
Average Return on Book Value (ARBV), Internal Rate of Return (IRR), and Payback
Value (PB).

 Cost Estimation for Product Line Engineering Using COTS Components 115

Variety of Viewpoints. The model analyzes the cost factors for each stakeholder
(corporate managers, domain engineering teams, application engineering teams, and
producers of reusable assets).

2.2 Poulin’s Model for PLE

Poulin, in [5], defines the ROI of a PLE project by the formula:

ADCn
i RCAiROI −∑ == 1 . (1)

RCA is the Reuse Cost Avoidance by the reuse of components i in the project:

SCADCARCA += . (2)

DCA is the Development Cost Avoidance by the reuse of a component:

)()1(tNewCodeCosRCRRSIDCA ×−×= . (3)

RSI is Reused Source Instructions.
RCR is the Relative Cost of Reuse. It represents the ratio of the effort that it takes

to reuse software without modification to the cost incurred to develop it to use once.
SCA is Service Cost Avoidance by the reuse of a component:

)()(errorCosterrorRateRSISCA ××= . (4)

ADC is the Additional Development Costs assumed by the reuse:

))(Re)(1(tNewCodeCossuseByOthernForCodeWritteRCWRADC −= . (5)

RCWR is the Relative Cost of Writing for Reuse. It represents the ratio of the
effort that it takes to develop reusable software to the cost of writing it to use once.

2.3 SoCoEMo-PLE

SoCoEMo-PLE is a Software Cost Estimation Model for PLE detailed in [6, and 7]
and based on the strong features of both the integrated cost estimation model for reuse
and Poulin’s model for PLE. SoCoEMo-PLE uses the two pre-cited models as basis
and tries to palliate their insufficiency regarding to the PLE development. In fact, the
integrated cost estimation model for reuse considers reuse in general. It doesn’t
consider specifically the PLE development life cycle. Poulin’s economic model for
PLE is a rapid and simple model. It doesn’t consider many cost drivers like the
discount rate. It proposes a global formula that estimates the ROI of a project using
PLE, without detailing costs and benefits for each co-operant in the reuse program.

Notational conventions for SoCoEMo-PLE are γ, δ, α, and ρ which denote
respectively component, domain, application and corporate engineering factors. Cost
factors used are Y, d, SD, IC, C(y), and B(y). Economic functions used are NPV,
ROI, PI, ARBV, and PB.SoCoEMo-PLE supposes that the reusable components of
the product line are developed internally in the corporation (in the component
engineering cycle).

116 S.B.A.B. Lamine, L.L. Jilani, and H.H.B. Ghezala

3 SoCoEMo-PLE 2

The SoCoEMo-PLE 2 model is an extension of the SoCoEMo-PLE model. In fact,
SoCoEMo-PLE has a main assumption that the reusable components of the product
line are developed internally in the corporation. But the SoCoEMo-PLE 2 model
considers that COTS components can be bought. Thus, the cost cascade between the
cycles changes and obviously new cost components appear in the equations of the
previous model (SoCoEMo-PLE) to show the costs (and the benefits) incurred by the
use of COTS components. In this section we detail the SoCoEMo-PLE 2 model’s
equations for four engineering cycles. For each cycle, estimations are done for three
cost factors: IC, C(y), and B(y), since Y, d, and SD are uniform within a corporation.

Notational conventions, cost factors, and economic functions are the same used in
SoCoEMo-PLE.

In this work, we adopt the definition of a COTS component which is given in [8].
A COTS product is an executable software product that has the following
characteristics:

• It is sold, leased, or licensed to the general public.
• Buyers, lessees, and licensees have no access to the source code; hence can

only use the product as a black box.
• It is offered by a vendor who has created it and is typically responsible for its

maintenance and its upgrades.

It is available in multiple identical copies (within the same version) on the market.

3.1 Component Engineering Cycle

Investment Cost. The investment cost of the component engineering cycle is
estimated by:

LRSD C IC + = =)(γγ . (6)

LI is the certification and Library Insertion cost. It is determined by expert
judgment.

ER is the Estimation of the development cost for Reuse. It is formulated by:

PayRCWREER)(= . (7)

E is the Estimation of the development cost without reuse and to use once. It is
estimated by COCOMO in organic mode:

12.1
3SE = . (8)

Pay is the average monthly salary of the developer.
RCWR is the Relative Cost of Writing for Reuse.

Periodic Cost. The periodic cost of a reusable component γ of the product line is
estimated in year y by:

dPayyMNlPayyOCyC)()()(+=γ . (9)

 Cost Estimation for Product Line Engineering Using COTS Components 117

OC(y) is the Operating Cost of the library, given by:

NumberComponents

tOfLibrarytionnelCosTotalOpera
yOC =)(. (10)

Payl, and Payd are the average monthly salaries respectively of the librarian and
the developer.

MN(y) is the MaiNtenance cost, estimated by COCOMO by:

)()(ACTEyMN = . (11)

ACT is the Annual Change Traffic (the ratio of the yearly maintenance cost to the
development cost).

Periodic Benefit. The periodic benefit of a reusable component γ of the product line
is estimated in year y by:

)()()()()(yWPyWBfreqyBPyBBfreqyB +=γ . (12)

freqBB(y) and freqWB(y) are respectively the component’s black box and white
box reuse frequencies in year y. They are determined by existing data or by expert
judgment.

BP(y) and WP(y) are respectively Black box and White box Prices of the
component, given respectively by:

ERBPBP)(= . (13)

ERWPWP)(= . (14)

RBP and RWP are respectively Relative Black box and Relative White box Prices,
which are determined by expert judgment.

3.2 Domain Engineering Cycle

Investment Cost. The investment cost of the domain engineering cycle is estimated
by:

∑
=

+∑
∈

+=
SD

N

i
i

CCOTSSDCPLADCIC
1

)(
δγ γδ . (15)

Cγ(SD) is the investment cost of the component γ.
PLADC is the Product Line Architecture Development Cost which comprises costs

relative to the different steps to build a PLA, described by [9]:

• BCAC (Business Case Analysis Cost),
• SC (Scoping Cost),
• PFPC (Product and Feature Planning Cost),
• DPLA (Design of Product Line Architecture Cost),
• CRSC (Component Requirement Specification Cost),
• VC (Validation Cost).

118 S.B.A.B. Lamine, L.L. Jilani, and H.H.B. Ghezala

These costs are determined by expert judgment.

VCCRSCDPLAPFPCSCBCACPLADC +++++= . (16)

CCOTSi is the Cost of buying a COTS components i in year SD. We suppose that
the cost of a COTS component is less then the cost of the same component developed
by the component engineering cycle internally in the corporation. In fact, to [8], using
COTS components allows gain in cost, because the product is produced once and
used multiple times. Then, it can be sold for an arbitrarily small fraction of its
development cost.

NSD is the total number of COTS components bought in year SD.

Periodic Cost. The periodic cost for the domain engineering cycle is estimated by:

∑
=

+∑
∈

+=
Ny

i
i

CCOTSyCyAECyC
1

)()()(
δγ γδ . (17)

AEC(y) is the Architecture Evolution Cost in year y. In [9], evolution includes
changes to components of the product line, to the relations between them, etc. AEC is
determined by expert judgment.

Cγ(y) is the investment cost of the component γ, if y is the year where γ is
developed, because Cγ(y=SD)=ICγ. Else if y>SD, then Cγ(y) is the periodic cost of γ
in year y.

CCOTSi is the Cost of buying a COTS component i in year y. The same gain in
cost thanks to the use of COTS components (see Investment Cost.).

Ny is the total number of COTS components bought in year y.

Periodic Benefit. The periodic benefit of the domain engineering cycle is estimated
in year y by:

∑
=

+∑
∈

=
Nsell

j
j

CCOTSyByB
1

)()(
δγ γδ . (18)

Bγ(y) is periodic benefit of component γ in year y.
CCOTSj is the Cost of selling a COTS component j to the application engineering

cycle in year y. We suppose that the domain engineering cycle sells COTS to the
application engineering cycle at the same price it bought it.

Nsell is the total number of COTS components sold in year y.

3.3 Application Engineering Cycle

Investment Cost. The investment cost of the application engineering cycle is
estimated by:

Glue
NC

i
INCOTSiPRSDCIC +∑

=
+==

1
)(αα . (19)

PRi is the price of the component i used in application . The component i can be
developed internally in the component engineering cycle or it can be a COTS
component. In the first case, PRi is estimated by BPi or WPi, respectively Black box

 Cost Estimation for Product Line Engineering Using COTS Components 119

and White box Prices of the component. BPi and WPi are determined by expert
judgment. In the second case, PRi is the price of the COTS component.

NC is the total number of components used in application (components of the
product line or COTS components).

INCOTS is the cost of integration of COTS components used in application .
These costs are determined by expert judgment. We suppose that the integration costs
of components developed in the component engineering cycle and used in application

 are determined by the cost of the glue code needed.
Glue is the cost of glue code developed in the application in order to integrate the

product line components (developed in the component engineering cycle) used in
application . Glue is estimated by COCOMO (see equation (8)).

Periodic Cost. We suppose that the periodic cost of an application is null because it is
achieved in a year.

0)(=yCα . (20)

Periodic Benefit. The periodic benefit of an application in year SD is estimated using
RCA (see equation (2)) to quantify cost economies for an application in year SD.

∑
∈

+∑
∈

=
ααγ γ

α
s s

RCARCASDB
cot cot

)(. (21)

RCA is reuse cost avoided by the use of component developed in the component
engineering cycle.

RCAcots is reuse cost avoided by the use of a COTS component cots in the
application . We suppose that the reuse cost avoided by the use of a COTS
component (RCAcots) is greater then the reuse cost avoided by the same component
(RCA) developed by the component engineering cycle internally in the corporation.
In the same way we suppose that DCAcots>DCA and SCAcots>SCA (see equations
(3) and (4)). In fact:

DCAcots>DCA because, to [8] the use of COTS components permits gain in cost
(the multiple users of a COTS product share the cost of developing the product).

SCAcots>SCA because, to [8] the use of COTS components permits gain in
operational quality because the product is widely used by a broad segment of users,
then, it is typically thoroughly tested and debugged, hence it typically has much better
quality than any one user can afford. In addition, the use of COTS components
permits gain in maintenance overhead, because the multiple users of a COTS product
not only share the cost of developing the product, but they also share the cost of its
long term operation and maintenance. The vendor is typically responsible for its
corrective, perfective, and adaptive maintenance.

For years y after SD, we consider that benefits of an application in the product
line come from cost economies achieved by the use of high quality reuse components,
pretended to need less maintenance:

∑
∈

∑
∈

+=
ααγ

γα
s s

SCASCAyB
cot cot

)(. (22)

120 S.B.A.B. Lamine, L.L. Jilani, and H.H.B. Ghezala

SCA is service cost avoided by the use of component developed in the
component engineering cycle.

SCAcots is service cost avoided by the use of a COTS component cots in the
application . In the same way, SCAcots>SCA .

3.4 Corporate Engineering Cycle

Investment Cost. The investment cost of the corporate engineering cycle is estimated
by:

)(SDCINFIC δρ += . (23)

INF is the infrastructure cost. It is determined by expert judgment.

)(SDCδ is the investment cost of the domain δ of the product line.

Periodic Cost. The periodic cost in the corporate engineering cycle is estimated by:

)()(yCyC δρ = . (24)

Cδ(y) is the periodic cost of the domain engineering cycle in year y.

Periodic Benefit. The periodic benefit of the corporation is given by:

∑
∈

=
ρα αρ)()(yByB . (25)

Bα(y) is the periodic benefit of application α in year y.

4 Synthesis and Potential Benefits

SoCoEMo-PLE 2 estimates costs and benefits of software development with a PLE
approach using COTS components for four investment cycles. All of them cooperate
to ensure their own interest and also the collective one of the corporation that adopts a
PLE approach to develop software. Some costs are determined by expert judgment
[10].

Both theory (see sect. 3) and preliminary experiments of the model (we did not
present the example here for constraints of space) have shown the potential benefits of
the use of COTS components in a PLE development approach since these components
permit gains in cost, quality and then maintenance costs.

The main assumption in this work is that the core assets of the product line can
include COTS components. Thus, the cost cascade between the four cycles changes
with regard to the cost cascade of SoCoEMo-PLE (see fig. 1 and 2).

We notice that the symbol “+” on some costs (or benefits) in figures 1 and 2
indicates that the cost (or benefit) doesn’t come only from the cycle indicated by an
arrow, but it has also other source(s).

The cost balances of the SoCoEMo-PLE 2 model for the different engineering
cycles are given in tables 1 to 4. We emphasize the costs incurred by the use of COTS
components (italic) to clarify the difference with the SoCoEMo-PLE model.

 Cost Estimation for Product Line Engineering Using COTS Components 121

 IC Y d C(y) B(y)

C(y)+ B(y) IC+

Component
engineering

cycle
 B(y)

IC
 Y

d

Domain
engineering

cycle

Application
engineering

cycle

Y

d

IC+

 C(y) Corporate
engineering

cycle

B(y)

Y d

Fig. 1. Cost cascade for SoCoEMo-PLE. The different cycles feed costs and benefits to each
other.

 IC Y d C(y) B(y)

 B(y)+ C(y)+

Component
engineering

cycle
 B(y)

IC+ IC
Y

d

Domain
engineering

cycle
IC

B(y)

Application
engineering

cycle

Y

d

 IC+

 C(y) Corporate
engineering

cycle

B(y)

Y d

Fig. 2. Cost cascade for SoCoEMo-PLE 2 (see sect. 3)

122 S.B.A.B. Lamine, L.L. Jilani, and H.H.B. Ghezala

Table 1. Cost balance for the component engineering cycle

Year y Cost Cγ(y) Benefit Bγ(y)

y = SD Cost of development for reuse

+ Cost of certification and library insertion.

y > SD Costs of maintenance and library residence. Sell of components internally.

Table 2. Cost balance for the domain engineering cycle

Year y Cost Cδ (y) Benefit Bδ (y)

y = SD Cost of development of the PL architecture

+ Cost of development and residence of

components

+ Cost of buying COTS components in year SD.

y > SD Cost of evolution of the PL architecture

+ Cost of development and residence of

components

+ Cost of buying COTS components in year y.

Sell of components (COTS

or developed internally).

Table 3. Cost balance for the application engineering cycle

Year y Cost Cα (y) Benefit Bα (y)

y = SD Cost of buying reusable components

(COTS or developed internally)

+ Cost of integration of COTS

+ Glue code cost

Economies on development and

maintenance costs through the use of

reusable components (COTS or

developed internally)

y > SD Cα(y)=0 Quality gains (maintenance cost

economies) through the use of

reusable components (COTS or

developed internally).

Table 4. Cost balance for the corporate engineering cycle

Year y Cost Cγ(y) Benefit Bγ(y)

y = SD Infrastructure cost

+ Domain cost in year SD.

y > SD Domain periodic costs. Application periodic benefits.

 Cost Estimation for Product Line Engineering Using COTS Components 123

5 Conclusion

In this paper we presented a software cost estimation model for product line
engineering using COTS components: SoCoEMo-PLE 2.

This model is based on the calculus of costs and benefits for four investment cycles
in a corporation: the component engineering cycle, the domain engineering cycle, the
application engineering cycle, and the corporate engineering cycle. It is based on the
SoCoEMo-PLE model which doesn’t consider the use of COTS components. The
model SoCoEMo-PLE 2 has proved potential benefits (compared with results
obtained with the SoCoEMo-PLE model) both theoretically and by the application of
the model on an example. Our future work focuses on the integration cost of COTS
components (which are determined by expert judgment in the current model). Later,
we will focus on the costs of PLE use in a PLE development approach.

References

1. Lim, W.: Reuse Economics: A Comparison of Seventeen Models and Directions for
Future Research. Proceedings, International Conference on Software Reuse. Orlando FL
(1996) 41-50

2. Wiles, E.: Economic Models of Software Reuse: A Survey, Comparison and Partial
Validation. Version 2.1, Release, Report Reference: UWA-DCS-99-032, Department of
Computer Science, University of Wales, Aberstwyth Ceredigion SY23 3DB U.K. (1999)

3. Chmiel, S. F.: An Integrated Cost Model for Software Reuse. Thesis for the obtention of
PhD degree in computer science, Morgantown West Virginia (2000)

4. Mili, A., Chmiel, S.F., Gottumukkala, R., Zhang, L.: Managing Software Reuse
Economics: An Integrated ROI-based Model. CSEE Department, West Virginia University
Morgantown WV 26506-6109 USA (2000)

5. Poulin, J.: The Economics of Software Product Lines. International Journal of Applied
Software Technology (1997)

6. Ben Abdallah Ben Lamine, S. : Modèle d’estimation de coûts pour le développement
logiciel basé sur la réutilisation: Cas de l’approche PLE. Computer science Master, RIADI
Laboratory, National School of Computer Science, Tunis Tunisia (2004)

7. Ben Abdallah Ben Lamine, S., Labed Jilani, L., Hajjami Ben Ghezala, H.: A Software
Cost Estimation Model for Product Line Engineering: SoCoEMo-PLE. Proceedings, The
2005 International MultiConference in Computer Science and Computer Engineering,
Software Engineering Research and Practice conference SERP 2005, Las Vegas Nevada
USA (2005)

8. Mili, H., Mili, A., Yacoub, S., Edward A.: Reuse Based Software Engineering:
Techniques, Organizations, and Measurement. John Wiley & Sons, Inc., ISBN: 0-471-
39819-5 (2001) 672 p

9. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a Product
Line Approach. Addison-Wesley, Great Britain, ISBN 0-201-67494-7 (2000) 354 p

10. Ben Abdallah Ben Lamine, S., Labed Jilani, L., Hajjami Ben Ghezala, H.: Importance of
Knowledge Engineering in Cost Estimation Models for Software Reuse: Case of a
Software Cost Estimation Model for Product Line Engineering. Proceedings, The
Seventeenth International Conference on Software Engineering and Knowledge
Engineering, Taipei Taiwan China (2005)

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 124 – 134, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Innovation Management for Product Line
Engineering Organizations

Günter Böckle

Siemens AG, Otto Hahn Ring 6, 81730 Munich, Germany
guenter.boeckle@siemens.com

Abstract. Active innovation management is performed by companies to create
an environment that fosters innovation. In a product line environment, platform
and predefined variability restrict innovation because the development artifacts
in the platform and the variation are prescribed. An analysis of innovation pro-
jects in literature shows that moderate innovations like introducing a new mem-
ber of a product line yield only a small return on investment. This paper intro-
duces a series of measures that can help to prevent a lock-in of a product line
organization with respect to innovation. We take a look at various aspects of in-
novation – personnel, customer and market, technology and engineering, or-
ganization and process. Organizations may pick the best-suited measures for
their current situation.

1 Introduction

We cannot command or order innovation. However, we can create an environment
that fosters innovation. This is being done in companies already, often by a planned
innovation management process. In a product line engineering organization, however,
innovation may be blocked. We have platforms that provide certain artifacts for reuse
in products and we have predefined variability. This means that particular innovations
may be blocked from consideration or from introduction. Platform artifacts may be
considered as fixed because a change may affect many existing and planned products.
In many cases there is also a platform evolution plan that restricts changes of platform
artifacts. The reference architecture determines the structure of all products, and
changes to the architecture mostly require considerable effort for existing and planned
products. Variability is pre-planned in a variability model, thus changes that go be-
yond this pre-planned variability may also require considerable effort; thus, innova-
tions that affect the variability model may not be considered. So, there seems to be a
lock-in of product lines that prevents innovations that go beyond pre-planned platform
assets, their evolution, reference architecture, and variability model. There is the dan-
ger that innovation is only allowed or put into practice as far as the platform (and its
evolution plan) and the variability model allow.

This paper presents a series of measures that can be taken to prevent such a lock-in.
The list of measures is quite large and no organization will be able to perform all of
them. These measures are just proposals and an organization may select some of them
that are adequate for their particular situation.

 Innovation Management for Product Line Engineering Organizations 125

2 Motivation

Kleinschmidt et al. [1] made analyses of the success of innovations. They categorized
innovations into three classes according to low, moderate and high degree of innova-
tion and determined the return on investment (ROI) and the success rate for each
class.

Table 1. Return on investment for three classes of innovation (from [1])

Degree
of inno-
vation

Characteristics Reasons for high or low ROI
and success

Return on
invest-
ment

Suc-
cess
rate

Low Product modifications or
new market positioning

- - Low investments
- Market and technology

know how

124% 68%

Moder-
ate

New products of existing
product lines or new
product line for the com-
pany with products that
exist already in the market

- Moderate product advan-
tage

- Underestimation of exist-
ing market and technology
challenges

31% 51%

High New product lines for the
company with new prod-
ucts for the market

- High product advantage
compensates for lacking
routine in market and tech-
nology

75% 78%

The findings, deduced from analyses of 203 projects in 125 international companies,
show that moderate innovations yield the lowest return on investment. The rather low
success rate of moderate innovations is rather surprising. So, for planning innovations
we have to consider the potential ROI carefully. A very critical result from the analy-
ses that gave the motivation for this paper is that a new product in an existing product
line yields a low ROI. This indicates the innovation lock-in mentioned above, al-
though this is not explicitly mentioned in [1]. As conclusion from these analyses we
have to take special care for innovation in a product line organization and should
consider measures to do this as part of a planned innovation management process.
Such measures are put together in this paper.

There are some measures for innovation management in product-line organizations
that shall be taken in any case:

• Innovation management shall be performed as a planned process.
• Roles for innovation management shall be defined and responsibilities assigned.

Innovation will only be realized if someone is responsible for performing the ade-
quate measures.

• For all non-trivial innovations an impact analysis, effort estimation and ROI shall
be determined.

• The evolution of the product portfolio, platform, variability model, and reference
architecture shall be planned with further innovations in mind.

126 G. Böckle

3 Innovation Aspects

When we speak about innovation, we typically think of technological innovation,
especially revolutionary innovations. However, for creating an innovation-friendly
environment we have to consider several aspects of innovation, not just technology.
And there are many innovations that are not revolutionary but still very successful, as
Table 1 shows. In this paper, the following aspects of innovation are considered:

• Personnel aspects
• Customer and market aspects
• Technology and engineering aspects
• Organization aspects
• Process aspects.

Below, for each of these aspects a series of measures is listed from which an or-
ganization may select those that are appropriate for its situation. Many of these meas-
ures are already used in common innovation management; here they are adapted to a
product line environment.

3.1 Personnel Aspects of Innovation

Innovation management offers encouragement for personnel e.g. in creativity work-
shops, for lateral thinking etc. Some of those workshops should be focused in a prod-
uct-line organization especially on product line portfolio evolution, platform evolu-
tion, and variability evolution. For the identification of new features, creativity work-
shops on ideas about new features may be conducted for experts from marketing,
product management, architects, engineering, maintenance, and others. The topic
“thinking beyond our platform and current variability” may also be included in per-
sonnel-training sessions.

An intranet discussion forum and bulletin board for innovation and topics of plat-
form, reference architecture, variability, etc. can help to support the exchange of
ideas. For identifying daily practices that hinder innovation, people shall be encour-
aged to report those.

A reward system for innovation regarding the product line shall be established.
A role must be specified to pick up ideas from such workshops and discussion fo-

rums and check how these ideas can be used for product portfolio evolution, platform
evolution, and variability evolution. These ideas shall be analyzed to determine how
they can be put into practice, considering restrictions by the platform and the variabil-
ity model. The ROI for making changes that put such ideas into practice shall be de-
termine for selected ideas.

In PLE, cross-functional teams are used for many product-line related purposes.
Such teams, where expertise from different fields meets are good places for innova-
tion. These teams may be encouraged for using their meetings for “innovation ses-
sions” where their different domain knowledge can further innovative ideas.

 Innovation Management for Product Line Engineering Organizations 127

3.2 Customer and Market Aspects of Innovation

The market analysis has to identify new markets for the product line, trends in mar-
kets, new usage patterns, new features, competitors’ offers, etc. There are two ap-
proaches to be taken: the first one determines the new features required (or wished)
by the new markets and then analyses if and how platform and variability model sup-
port those. The second approach analyses the possibilities offered by platform and
variability model and analyses how they can be used to support particular features
(including determining how company and product line image fit in these markets).
Market analyses shall also analyze the product line’s success in different cultures to
answer questions like: Which features are exciting1 in different cultures? In which
directions shall the product portfolio, platform and the variability model be extended
for different cultures? Market analysis shall include identifying potential strengthen-
ing or damage to the company image and product line brand identity if certain fea-
tures are added, new markets approached, etc.

The platform may be marketed as a brand of its own. The organization may create
a product line brand, not just a company image and product brand. The platform flexi-
bility may be marketed as virtue of the product line brand.

For some customer groups, companies provide help desks for reporting problems.
In some cases it will make sense to categorize and analyze customer-reported prob-
lems to find out which ones are due to the platform and predefined variability. The
analysis shall also find out if changes to overcome these problems will improve or
hinder platform development. It shall be determined if new features customers ask for
fit into the feature model and the variability model and which changes will be neces-
sary.

In cases where an organization knows their customers, platform and variability
shall be revealed to certain customers and they shall be encouraged to make proposals
for innovation: new features, improved user interface, more or different variants, new
variation points, etc. Creativity workshops can be performed with them on ideas about
new features. The results of these workshops shall be analyzed, partly together with
the customers, to find out if and how these features can be supported by the platform
and the variability model.

Some organizations provide usability labs where customers can play with new
products and where ideas and complaints are collected. These ideas and complaints
can be related to the feature model, platform and variability model. An analysis can
show how the ideas can be supported by them and how feature model, platform and
variability model can help to overcome the usage problems, and where changes need
to be made.

Product management shall update product and innovation roadmaps regularly.
They shall review exciting1 features for planned products relative to new market in-
sight and customer wishes. The results shall be analyzed with respect to support by
platform and variability model.

The objectives proposed in [3] for regular assessments of the innovation portfolio
shall be complemented by product-line specific objectives:

1 According to the Kano categorization of requirements.

128 G. Böckle

• Assessing the innovation portfolio w.r.t. the platform and variability model. Be-
sides assessing each initiative individually for risk, investment, return, and timing,
the total product line portfolio shall be assessed to ensure that we have the right
initiatives in it.

• Stretch and strategic fit. How much does the portfolio push the industry frontiers,
and how well does it fit with the business goals, business strategy, product line
goals and strategy? How can the product line strategy (including platform strategy)
support the business strategy?

• Capabilities and capacity. Do we have the required capabilities to execute the prod-
uct line portfolio and do you have enough of them?

• Leverage and risk. Did we leverage our investments for product line and the indi-
vidual products in it (i.e., domain engineering and application engineering) so that
we have a productivity advantage, while keeping risk within acceptable bounds?

3.3 Technology and Engineering Aspects of Innovation

Engineers shall watch new technology, new ideas and approaches. They shall present
those ideas and approaches that they categorize as useful to a person responsible for
assessing them if they can be applied for the product line, if they can improve busi-
ness and if they can provide sufficient ROI.

Technological innovations encompass not only breakthrough innovations, but also
new modeling technologies (for instance MDA, MDD, etc.), new templates for docu-
ments, new design and programming approaches (e.g. aspect-oriented programming),
new ideas for architectural structuring, new technological features, new support for
quality characteristics (e.g. for making something more reliable or faster), new algo-
rithms for performing some functionality better or adding some functionality.

Joining existing platforms may enlarge the functionality and increase the quality of
the platforms. A risk analysis and ROI have to be made. Unnecessary and double
artifacts in the joined platform have to be removed; a new platform evolution plan is
necessary. Similarly, if a platform becomes too large and hard to handle, a platform
split shall be considered. The connectivity of certain parts of the platform and the
usage in different products shall be determined to identify mostly independent parts.

Innovative COTS2: Watch the market for innovative COTS that can replace COTS
in the product line, especially in the platform. Prioritize them, especially with respect
to their ROI (considering potential reference architecture changes).

The usage of prototypes for new products and new approaches shall be encour-
aged. It shall be assessed which new artifacts based on the prototypes should be put
into the platform, which existing ones can be used from the platform, and which ones
shall be product-specific.

3.4 Organizational Aspects of Innovation

For supporting innovation, cross-functional teams are essential. These are needed for
product-line engineering, anyway; they consist mostly of people from domain engi-
neering and application engineering with different expertise (product management,

2 COTS = Components Off The Shelf.

 Innovation Management for Product Line Engineering Organizations 129

architecture, design, test, maintenance, etc.). Such cross-functional teams should get
the tasks to devote a certain amount of their meeting time to innovation.

Cooperative development with companies and research institutes that have specific
expertise in innovative development approaches and innovative products is a way to
support innovation. Corresponding roles, contracts, processes and environment for
cooperative work are necessary for this.

Opening a platform for other organizational units inside a company may support
innovation, new ideas, and new applications. A platform may also be opened for other
companies; an example is the Symbian operating system. Different participating com-
panies may offer different new ideas, features, requirements, development ap-
proaches, etc.

New business models: Innovation can also come from new business models. Vir-
tual integration of organization units, various kinds of partnerships, strategic alliances,
joint ventures, open enterprises and extended enterprises are becoming common parts
of a competitive strategy. Cooperation of different partners around one or more com-
mon platforms and around a common variability model can support innovation. Open-
ing platform and variability model in new business models is an important aspect of
organizational innovation.

3.5 Process Aspects of Innovation

For all kinds of innovation it has to be checked if they affect domain engineering (i.e.
the platform) or application engineering (product-specific topics) or both.

Process and organization balancing: For innovation support it is important to re-
main flexible. Depending on the kind of innovation (new market, new features, new
quality, etc.) a prototype or lead product may be produced. This means shifting per-
sonnel and other resources to an application engineering project for this. When a lead
product or prototype is considered successful, personnel and other resources have to
be shifted to domain engineering so that artifacts can be adapted for being incorpo-
rated into the platform. The corresponding managers must get the responsibility and
decision power to perform such shifts.

A defined process should make measurements. This means for innovation man-
agement:

• Note whenever a competitor makes an innovation that the organization does not
have.

• Note whenever an innovation cannot be made because of insufficient ROI and note
the reasons (e.g. high effort for architecture change).

• Note whenever an employee does not find an adequate variability in the variability
model or an adequate artifact in the platform.

These notes shall be analyzed regularly and the project leader (or other responsible
role) shall try to define actions based on the results.

For all changes that are considered for innovation the 80/20 (sometimes also de-
noted as 90/10) principle may be applied. It is determined if a new artifact belongs to
the 10% or 20% that are differentiating, i.e. that distinguish the company from all its
competitors and that contain the organization’s knowledge of their customers’ wishes
and their expertise of the market and technology. Otherwise, it may be of the

130 G. Böckle

80 – 90% commodity that an organization builds, but that could be built by some
other company, too. For all innovations concerning the differentiating part, extra
accuracy shall be put in innovations there; this will be most effective. Many of the
differentiating parts of an organization will be in its platforms, but also in the variabil-
ity model. So, these should be considered first for innovation. It may be considered to
use different platforms for differentiating and commodity artifacts, so that the latter
may be offered to other organizations for cooperation.

Quality management: In markets where quality matters, innovations that improve
quality are especially important. Changes that improve quality in platform artifacts
and in the reference architecture will have most effect, because they affect more than
one product. In cases where Six-Sigma or some other quality management method is
applied, quality improving innovations for the platform and the variability model shall
be considered first.

Innovation in teaching: All kinds of innovations in training, teaching, coaching
shall be considered for the platform and variability model first, because they bring
mostly more effect than the product-specific parts. Teaching about product line proc-
esses, platform and variability for new and experienced people can also bring new,
innovative ideas. All training shall also be used for gathering new ideas for improving
the product line.

Innovations in maintenance: Making things similar or the same for all products of a
product line will make maintenance much easier and faster. The maintenance people
have direct contacts to customers and learn from them about problems with the prod-
ucts. The complaints and ideas from maintenance personnel shall be collected and
analyzed for improving the product line.

New roles: For innovation management we have to introduce new roles with re-
sponsibilities for tracking data about innovations and for analyzing and assessing
these data.

4 The Analysis

In many of the cases described above, data has to be analyzed with respect to the
influence on the product line. In this section, we consider the analysis of technological
aspects.

One kind of innovation concerns new technology for developing artifacts of the
products. These may be new templates, new modeling techniques, new programming
languages, new interface descriptions, new tools, etc. In these cases we have to check
if the artifacts created with the new technology can be used together with the old ones
or if the old artifacts have to be changed to the new technology. Such a change may
entail an adaptation or a rewriting of existing artifacts and corresponding updates in
the configuration management. Several solutions for such changes may be possible
and have to be compared with respect to cost and benefit. These innovations may
affect the architectural texture (e.g., new rules for describing architectural artifacts).
The effort for performing these changes has to be determined and the resulting cost
has to be compared with the benefit from doing it; i.e., the return on investment (ROI)

 Innovation Management for Product Line Engineering Organizations 131

has to be determined for supporting the decision about applying the new technology
and for the selection of appropriate changes.

Another kind of innovation concerns the product technology. These may be new
algorithms, support for new hardware, new features and requirements and the artifacts
for their realization, etc. The innovation has to be checked if it means just an addition
of new artifacts or changes to existing artifacts in the platform. For each innovation
we have to determine its impact on the reference architecture. The innovation may
just mean an addition to the reference architecture, or it may mean a minor change to
existing parts of the architecture. This may result in changing existing artifacts. Thus,
new versions of existing products may have to be developed and integrated in the
platform and the configuration management system. The innovation may involve a
change to the reference architecture, which may entail many other changes. Any of
these changes may entail in addition to technology changes also changing training,
e.g. for maintenance people and customers. The effort for performing the required
changes has to be determined and compared with the benefits.

An innovation has to be checked if it affects the variability model in the various
kinds of artifacts - features, requirements, architecture, design, and test. A change to
the variability in features or requirements will mostly cause changes in the architec-
ture variability, the design and test variability. A change in the architecture variability
will mostly cause changes in design and test variability, and a change in design vari-
ability may cause changes in the test variability. But also other dependencies have to
be checked. In some cases an architecture change can influence requirements.

For analyzing impacts on the variability model we take a look at the terminology
used here for variability.

VP

VP name

VP

VP name

Variant 1

V

Variant 2

V

Fig. 1. Variability notation

The variability may be described as part of the artifact models – features, require-
ments, architecture, or design. Or it may be described in a separate, orthogonal vari-
ability model, independent from the artifact models, but related to them (typically via
dependency links). The latter allows for easy traceability of relations between vari-
ability in different artifacts. In any case, we have variation points that define what
varies. Connected to a variation point are variants that represent the selections to
choose from at a variation point (“how it varies”). Between variation point and

132 G. Böckle

variants we have variability dependencies – mandatory, if we have to select a certain
variant; alternative, if one of several variants shall be selected, and optional if a vari-
ant may be selected or not. We may have ‘requires’ or ‘excludes’ dependencies be-
tween variants, variation points, and between either. For further information about
variability, see [2]; a detailed introduction to variability is provided there, together
with descriptions about variability in the different artifacts.
An innovation may have several kinds of impacts on the variability model:

• Introduction of a new variant to an existing variation point. This is mostly an easy
case with minor changes only. However, it may change platform artifacts and may
need configuration management effort. If we have an orthogonal variability model,
the sub-graph of all dependent variation points and variants can be constructed to
identify any changes induced by the introduction of the new variant. Otherwise, the
induced changes have to be determined mostly manually. Tests for the new variant
have to be created and included in existing test cases or new test cases have to be
introduced. Maintenance plans have to be adapted.

• Deletion of a variant. This may happen if a specific variant shall no longer be of-
fered. In this case it has to be checked if any future and current products need this
variant and if there are any dependencies to other variants (e.g., another variant
needs this one). Also former products that still are supported by maintenance have
to be checked. In cases where we still need the variant, it must not be deleted or it
has to be changed accordingly. Otherwise, it may be deleted but still changes to
other variants may be necessary. Configuration management, tests, and mainte-
nance plans may have to be adapted.

• Changes to existing variants. In this case all dependent variation points and vari-
ants have to be determined (e.g., by constructing the sub-graph of dependent varia-
tion points and variants in an orthogonal variability model) to identify any changes
related to this change of one or more variants. Usually, this means that configura-
tion management has to introduce new versions of the variants, and that tests have
to be adapted.

• Introduction of a new variation point. Here, the reference architecture will mostly
be affected. An artifact that has so far been fixed becomes variable by introducing
a variation point. This may introduce changes to several artifacts; i.e., if a variation
point is introduced in requirements or features, this may mean introducing varia-
tion points in architecture, design and test. The dependencies of the new variation
point on other variation points have to be determined and modeled. Configuration
management, tests and maintenance plans have to be considered for changes. This
case may cause significant effort for realization. Also the platform evolution plan
may be affected.

• Deletion of a variation point. This may happen if only one variant of this variation
point shall be offered in future, or even none. Current and future products (and for-
mer ones for which we still offer maintenance) have to be checked if they will need
the variation point, and all variants and variation points that have a constraint de-
pendency on this variation point have to be identified for checking if the deletion
can be performed. This deletion may cause changes in other artifacts, too (require-

 Innovation Management for Product Line Engineering Organizations 133

ments, architecture …). Configuration management and tests have to be checked
for changes and also the platform evolution plan may be affected.

• Changes of dependencies between variants. This may be a ‘requires’ dependency
where the selection of a variant at a variation point requires the selection of a par-
ticular variant at another variation point. Or it may be an ‘excludes’ dependency
where the selection of a variant at a variation point requires that a particular variant
at another variation point must not be selected. A change to such a dependency
may either be a change (from ‘requires’ to ‘excludes’ or vice versa) or it is deleted
or a new dependency is introduced. The first case will rarely happen, the second
case may cause changes to tests, while the third case may cause changes to other
artifacts (if a new ‘excludes’ dependency is introduced between requirements, this
may cause a change to the reference architecture). It has to be checked if tests need
to be changed.

• Changes of dependencies between variation points. Again we may have a ‘re-
quires’ dependency (the fact that we offer a selection at one point requires that we
offer a selection at another point) or an ‘excludes’ dependency (the fact that we of-
fer a selection at one point excludes selection at another point i.e., requires that the
other point is fixed). Again, changing such a dependency from ‘requires’ to ‘ex-
cludes’ or vice versa will rarely happen, but an existing dependency may be de-
leted or a new one introduced. The second and third case may cause changes to
tests, and the third case may also cause changes to other artifacts (as above).

• Changes of dependencies between variation points and variants. Here we may
have the variability dependency between a variation point and its variants; this
comprises the three cases ‘mandatory’, ‘optional’ or ‘alternative’. Again, a change
may either mean that the kind of dependency changes or that new dependencies are
introduced or that existing ones are deleted. Mostly, such a change will not cause
much effort, except for tests that check the dependencies. There may also be con-
straint dependencies between variants and variation points; this is the case when
the selection of a variant at a variation point requires or excludes the availability of
another variation point. Changes to that may in some cases affect changes in other
artifacts (like above).

In most cases we have to check who will be affected – engineers, marketing peo-
ple, testers, maintenance people, or customers. This means that we may have to con-
sider changes in marketing strategy and material, training for customers, engineers
and other personnel, changes to the product line portfolio, to the platform administra-
tion and evolution, and to the development process.

5 Conclusion

In a product line environment the paths an innovation may take are restricted by the
platform and the predefined variability. The platform requires using predefined refer-
ence architecture and other predefined artifacts. The variability model restricts the
variation for products of the product line. This may lead to a lock-in situation where

134 G. Böckle

the innovation that is necessary to increase market share is blocked. This paper pre-
sents a series of measures to overcome this problem. An organization may select the
most appropriate ones for its current situation.

For making these measures a categorization of innovation measures into personnel,
customer and market, technology and engineering, organization and process aspects is
used that helps for the selection.

References

1. Kleinschmidt, E.J., Geschka, H., Cooper, R.G.: Erfolgsfaktor Markt – Kundenorientierte
Produktinnovation. Springer-Verlag, Berlin Heidelberg New York (1996)

2. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering – Foundations,
Principle & Techniques. Springer-Verlag, Berlin Heidelberg New York (to appear 2005)

3. http://www.1000ventures.com/business_guide/innovation_strategy.html; as of April, 2005.

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, p. 135, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Panel:
Change is Good. You Go First

Charles W. Krueger

BigLever Software,
10500 Laurel Hill Cove,
Austin TX 78730 USA

ckrueger@biglever.com

Abstract. There is ample evidence that for many software development organi-
zations, a change to software product line practice would be good. But there is
also a reluctance by many of these software development organizations to go
first. This panel explores what remains to be done by the SPLC community and
others to overcome the inhibitors and to facilitate SPL adoption.

Overview

Of two things we can be certain. The first is that software product line practice offers
some of the largest software engineering improvements seen in over four decades –
numerous case studies have proven this. The second is that software product line
challenges and opportunities exist in most commercial software development organi-
zations – few markets call for just one product without variants.

From these two givens, the obvious expectation is a wholesale rush by the software
development industry to embrace software product line practice. However, there is
little evidence that such a trend is yet underway. In fact, very few organizations are
coming forward to SPLC or other public forums with adoption or success stories.

This panel will explore the reluctance of software development organizations to be
among the first to adopt and gain the benefits of software product line technologies
and methodologies. The panel is comprised of software product line leaders with
firsthand, in-depth experience in promoting and championing software product line
practice, from inside and outside of candidate software development organizations.

What are the economic, temporal, cultural, and technological barriers – real or per-
ceived – that prevent organizations from doing something that on the surface seems so
obvious? What are the objections? What are the excuses? What are the inhibitors?
Why do organizations think it doesn’t apply to them?

Insights from this panel will help the audience to understand what needs to be
done, both in research and in practice, to facilitate widespread adoption of software
product line approaches in commercial practice.

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, p. 136, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Panel:
A Competition of

Software Product Line Economic Models

Paul Clements

Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA 15213-3890 USA
clements@sei.cmu.edu

Abstract. Proponents of different software product line and software reuse eco-
nomic models will be given a real-world software product line scenario and
asked to predict alternate outcomes and to justify – with hard data from their
models – some of the difficult choices that need to be made in the scenario. The
audience will have a chance to compare, side by side, the predictions, recom-
mendations, insights, intuitive fidelity and ease-of-use of the different models.

Overview

There are numerous compelling success stories and abundant anecdotal evidence to
suggest the tactical and strategic benefits of software product line practice. However,
the stories and anecdotes also illustrate that there can be significant cost and risk.

In order for a software development organization to make the fundamental decision
to embrace a software product line practice, real economic justification is needed,
based on accurate economic models and engineering data. Without a realistic and
accurate prediction of the prerequisites, risks, costs, returns and timeframes, manage-
ment will be reticent to support a transition to software product lines.

There are published economic models for software reuse and software product
lines that promise a solution to this problem. But how do these different economic
models compare? This panel will offer insights in the form of a head-to-head competi-
tion. It will allow the audience to:

• learn how to apply the different economic models in a real-world scenario
• see what predictions the models can and cannot provide
• identify tradeoffs among the different models
• see which models are most intuitive and easy to use
• decide which ones they like best

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 137 – 149, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Enabling the Smooth Integration of Core Assets: Defining
and Packaging Architectural Rules for a Family of

Embedded Products

Tim Trew

Information Processing Architectures Group,
Philips Research Laboratories

Tim.Trew@philips.com

Abstract. One of the remaining challenges in product line engineering is how
to establish the quality of the reusable assets so that we can be confident that
they can be configured and composed reliably. This is desirable, both to avoid
having to completely re-test each product and to avoid integration faults only
being detected late in product development. One of the diversity mechanisms
of Philips’ high-end TV product line is the selection and composition of sub-
systems, so different sub-system variants must integrate reliably if the aims of
the product line are to be realized. An earlier study of integration testing
obligations in Philips products concluded that certain design policies must be
imposed if integration testing is to be feasible, but it did not describe how
relevant policies could be identified at the earliest stages of design. This paper
addresses how a set of architectural rules were established for the TV product
line through a root-cause analysis of problem reports, and packaged so that
developers can recognize when they should be applied. The approach builds on
other work on the impact of design choices on non-func-tional requirements to
ensure that all quality attributes are addressed.

1 Introduction

Many well-known product lines[1] are for families of embedded systems, where hard-
ware diversity is a source of product variability. Embedded systems often share other
properties:

• They use concurrent or multi-threaded designs to ensure that they can meet all
real-time deadlines.

• They are developed by multiple groups, with limited communication between
them, each with skills in particular aspects of the system and its development.

• New hardware and software core assets are developed concurrently.

In developing a product line, we aim to create a repository of core assets, which
can be rapidly composed into product instances. This paper addresses the experience
of reducing the faults found during the integration of high-end TVs in Philips
Consumer Electronics, in particular by identifying architectural rules that should
be applied to make this feasible. This section continues with an overview of the TV

138 T. Trew

Teletext

Applications

EPG TV Services Fact. Dealer

UIMS

Infra
TV Platform

tvapi

Fig. 1. High-end TV product line sub-systems

architecture and its development process. Section 2 summarizes the issues of
integration and testing, providing the motivation for “Design for ‘Plug and Play’”,
described in section 3, which identifies rules that eliminate many classes of
integration faults, shifts the balance of test responsibility towards the core assets and
makes the residual integration test obligations attainable. Finally, section 4 discusses
the deployment of such rules in the product line development organization.

1.1 Philips High-End TV Architecture

The product line architecture, together with its supporting Koala component model,
has been documented by van Ommering[8]. Figure 1 shows its principal sub-system
decomposition. Considering its sub-system structure, it has a hardware abstraction
layer, whose interface is defined by the tvapi, several service sub-systems, which are
generic to all TVs, and a general computing infrastructure and user-interface
management system (UIMS). Finally, the applications structure the behavior as
perceived by the user. The sub-systems and their constituent components are
characterized in terms of their required and provided interfaces.

A variety of diversity mechanisms are used[8], principally:

• Selection of sub-systems. In particular, the tvapi has been implemented by three
entirely-different TV Platforms, supported by very different hardware.

• Diversity interfaces, through which components query parameters through their
required interfaces. Components are nested recursively as compound compo-
nents until the top-level component, representing the complete product, is
reached. Diversity interfaces can be propagated outwards, with explicit settings
being made at appropriate levels in the hierarchy, depending on the nature and
scope of the product diversity.

• Product-specific glue modules, which adapt between mismatched interfaces or
implement small fragments of product-specific functionality not supported by
the reusable sub-systems. A switch is a particular type of glue that provides
alternative component bindings that can be set at compile- or run-time.

Consequently, a product is instantiated by selecting the appropriate sub-systems,
binding them, using product-specific glue where necessary, and satisfying the
diversity interfaces at all levels of the component hierarchy.

 Enabling the Smooth Integration of Core Assets 139

1.2 Philips High-End TV Development Processes and Organization

The product line is developed across multiple sites and the architecture is designed so
that a specific site is responsible for the development of all variants of a particular
subsystem. Additionally, specialized sites are responsible for the final product
integration, i.e. binding the sub-systems, instantiating diversity parameters and
creating product-specific glue.

The development process can be summarized as follows:

Product line definition: the product line scope, commonality and variability are
identified and elements of features are allocated to sub-systems. Some key axes of
variability are geographical region, display technology (CRT, plasma, LCD) and level
of features. This activity is repeated periodically as completely new features, e.g.
digital TV or wireless connectivity, are added to the product line scope.

Sub-system specification: sub-systems are defined by their provided and
required interfaces, whose specifications are placed under a global change control
board to ensure stability.

Sub-system design: sub-system architects decompose the sub-systems into finer-
grained components, again defined by their interfaces, which can be allocated to small
groups of developers. When a new variant is required, it is created through a
combination of existing components and newly developed ones.

Sub-system implementation and test: the components are created and composed
into sub-systems. These are intended to be tested such that they can be integrated into
a product, using the diversity mechanisms described in section 1.1. Testing and inte-
gration are discussed further in section 2.

Product instantiation: sub-systems are delivered to the integrating site, then
composed using glue modules as required, and tested. The complexity of this process
depends on the phase in a generation of the product line. Periodically, substantial
changes are made to the functionality offered or the technology employed. In this
case, incremental development is used, in which new functionality is partitioned into
feature blocks, and the corresponding functionality is added to all relevant sub-
systems in a synchronized manner. This brings the advantages of better risk
management inherent in an iterative life cycle and has successfully brought new
features to market, despite constrained development times. The delivery of features
blocks is followed by several maturity releases, during which problems are resolved.
It should be noted that there is considerable tension between quality and schedule
during the development of feature blocks since such major changes in functionality
are often accompanied by substantial changes in hardware and early versions of the
software are required to validate overall system performance, irrespective of their
reliability.

Once the first instance has been integrated successfully, other members of the
product line are instantiated without significant changes to the constituent sub-
systems, as illustrated in simplified form in figure 2. A consequence of this process is
that difficult integration problems have only been addressed during the maturity
releases, when their solutions may be overly-tuned to a particular composition of sub-
system instances.

140 T. Trew

Feature

Block 2

Feature

Block 2
 Sub-

Sub-

Feature

Block 1

Feature

Block 1

Product 1 Feature

Block 1

Product 2 Maturity

Release

Product 3 Maturity

Release

system A

system B

Feature

Block 2

Maturity

Release

Maturity

Release

Maturity

Release

Fig. 2. Simplified view of the incremental development of new functionality for a newgeneration of
a product line, followed by the creation of further product instances

Two main obstacles to achieving adequate sub-system testing were identified:

1. The obligation of component testing, of which sub-system testing is an example,
is to show that the component satisfies its provided interfaces for any correct
implementation of its required interfaces. In doing so, it must show that there
are no undocumented constraints between the interfaces. To give an impression
of the magnitude of the difficulty of achieving these obligations, a particular
version of the TV Services sub-system had 85 provided interfaces (many of
which are handlers for platform-generated notifications) and 141 required
interfaces. Each of these interfaces could contain many individual functions.

2 Testing and Integration Issues

When the TV product line development was started in 1998, it was widely believed
that it should be possible to test a sub-system against its interface specifications with
sufficient rigor that sub-systems could be composed into products without knowledge
of the internal design of other sub-systems and without many global rules.
Consequently, problems encountered during the integration of early products were
considered to be the result of inadequate sub-system testing and there was pressure on
the test teams to develop new methods. Initially, the focus was on testing individual
interfaces using a bottom-up integration strategy and many cases were found in which
such tests passed, but the system tests still failed, so an improved sub-system testing
strategy was sought.

 Enabling the Smooth Integration of Core Assets 141

2. There is a tension between the interests of the designer of a server component
and tester of its clients. The designer may wish that some aspects of their
interfaces,e.g. constraints on the order in which notifications are generated, are
loosely specified, to allow flexibility in design choices to meet other non-
functional requirements. In contrast, testers prefer maximal constraints on a
client’s required interfaces, so that only the smallest number of cases needs to
be considered.

However, two further problems become apparent:

1. The nature of the faults that were being found during integration was not simple
oversights, for which improvements to inspections, static analysis and testing
would be an appropriate response. Often sensible, but incompatible, local deci-
sions were made within each sub-system, resulting in system failures under ob-
scure circumstances. Even if an improved test strategy were developed that
triggered all such failures, it would still be necessary to identify the underlying
faults and correct them in a way that gave some confidence that the sub-systems
now interacted correctly. Therefore the problem is principally one of
architecture and design, rather than testing. For example, if there are no
constraints on the ordering of notifications delivered to a client, then the client’s
design must make it clear how this non-determinism will be accommodated.
This is particularly important in a product-line context where different product
instances may be based on different hardware and, in the TV example, different
instances of the TV Platform, so that a point solution is not adequate.

2. Following an analysis of several developments in Philips, including members of
the high-end TV product line, it became clear that there are a variety of classes
of integration errors that cannot be detected by testing individual components or
sub-systems. For products with internal concurrency and few hard real-time re-
strictions, the following classes of integration faults were identified:

• Incompatibility between actual and formal parameter ranges
• Inconsistent interpretation of parameter values
• Inconsistent parameter ordering
• Inconsistent use of shared global data
• Unexpected state-event combinations
• Unclear allocation of responsibilities between modules
• Unexpected re-entrancy
• Race conditions
• Unprotected critical sections and deadlock

Detecting these classes of faults requires an integration testing activity whose aim
is to check that components interact correctly under all circumstances, which may re-
quire much higher degrees of controllability and observability than would be possible
in a complete system. The resulting testing obligations and the design constraints
needed to be able to meet them economically have been discussed in [9] but, as
before, what is principally required is a design approach that specifically aims to
eliminate these classes of problems.

In the short term, these issues were addressed by extending the test strategy from
one focused on testing interfaces against their specifications to one of mapping

142 T. Trew

product-level scenarios down to lower-level sub-systems. This has led to the creation
of successful products, but at the expense of greater coupling between sub-systems
than was intended. This happens because:

• The mapping of test cases to lower-level sub-systems requires a detailed knowl-
edge of the behavior of the higher sub-systems.

• The majority of testing is now performed on a partially integrated system with
specific instances of the sub-systems and, as shown in figure 2, problems are re-
solved in the context of a particular product before the sub-systems stabilize and
are used to derive the remaining members of the family.

This can result in unexpected constraints being introduced on the required
interfaces of sub-systems, limiting the flexibility of the designers of new generations
of servers that provide them. A design approach is required that avoids this, while
satisfying all other constraints of the high-end TV development process.

3 Design for “Plug and Play”

An approach to design is required that results in sub-systems that:

• Can be expected to interact correctly under all circumstances, configurations
and diversity settings.

• Meet all other non-functional requirements, such as performance and
configurability.

• Can be developed on different sites with limited communication between them.
• Can be tested to detect implementation errors using methods and processes that

can realistically be deployed in our organization.

Considering these, we are not particularly concerned with “design for analyzabili-
ty” for functional correctness. The high-integrity systems community has identified
generic rules that permit the behavior and performance of systems to be predicted or
ana-lyzed[3]. However, given the loosely-coupled nature of multi-site product
development and the need to have apriori confidence that a component can be reused
in all instances of the product line, more specific design restrictions are necessary. It
would be unacceptable, having focused on analyzability, for a new instance of the TV
Platform to be designed, only for an analysis to reveal that a system property would
not be maintained when it is composed with existing sub-systems. Not only is it
likely that this would be found too late to meet time-to-market requirements, but
guidance would still be required on how to resolve the problem.

We must therefore be able to answer the following questions:

• What are the properties that must be maintained for sub-systems to interact
reliably?

• What are the rules that can be applied locally to ensure that these properties are
maintained?

• How can the rules be packaged and deployed so that it is clear to an individual
developer, with a very limited view of the system, which ones are relevant,
without requiring architects to state this explicitly in each case?

• What are the obligations of each of the test phases to detect implementation errors?
 These questions are addressed in the following sub-sections.

 Enabling the Smooth Integration of Core Assets 143

3.1 Identification of Crucial System Properties

The set of properties should be minimal, yet adequate. Their identification was boot-
strapped through a root-cause analysis of approximately 900 problem reports from the
product line, with the perspective of “how might this problem have been found earlier
or eliminated entirely?”. The problem reports were selected both from sub-systems
that had proved to be difficult to integrate and from cases in which a new platform
was introduced into the established product line. Although many issues were
identified, from requirements to testing, this paper concentrates on those in which a
design change would have avoided the problem. While the selection of problems
proved to be very effective at identifying design issues, the focused approach means
that it is difficult to draw statistical conclusions that would prioritize the
improvements.

Initially, the need for a design change was identified from a testing perspective[9],
prompted by cases in which it would be unreasonable to have expected a structured
test case design to have found the problem. While this view provides great insight, it
is not helpful in giving guidelines that can be applied from the earliest stages of
design. Furthermore, a single problem report may be the result of a variety of distinct
design issues or, conversely, it may not provide enough clues to recognize that it is
the result of poor design rather than an oversight in a specific instance. There are
substantial differences between the perspectives of the testers and architects and the
mental process of making the transformation between them is akin to that of
identifying a new design pattern, during which much disparate information is
internalized.

Function Call

Return Value
Semantics

Asynchronous
Calls

Acknowledgement
of Completion

Precondition
Satisfaction

Notification
Generation

Asynchronous
State Machines

Maintaining
InvariantsResource

Handover

Major
Transition

Re-entrant
Calls

Notification
Handling

Fig. 3. Example “Interaction Contexts”

144 T. Trew

The result of this process is a 2D matrix of properties and “interaction contexts”.
Interaction contexts, examples of which are shown in figure 3, provide the context
within which an architectural rule is to be applied. “Interaction contexts” are
therefore more abstract than Bachmann’s use of “patterns of interaction”[2] in relation
to component-based software engineering, which would result from the application of
the rules to particular interfaces. In figure 3, nested ellipses denote particular aspects
of an interaction context, whereas the dependencies, represented by the dashed lines,
indicate that a complex interaction context includes a simpler one. The crucial
distinction is that the target of an included context can exist in its own right.

Table 1 shows some examples of properties and their interaction contexts,
together with their most generic form. Subsequently, in relation to defining
architectural rules, these properties will be designated “intents”. Properties are
identified as follows:

• Following the analysis of a problem report, the interaction contexts involved in
the problem are identified.

• The properties that should have held in each interaction context are identified.
• The generic properties are studied to determine whether the new property is a

specialization of an existing generic property and whether there are other
generic properties that could also be applicable in the current context.

• If no generic property exists for the new interaction context-specific one, it is
abstracted and a generic property created.

Table 1. Example properties (Intents) and their specializations for specific interaction contexts

Interaction
Contexts

Intents

Generic
Functional correctness should not depend
on the relative priorities of threads

Variables must be initialized before they
are used

Notification

Handling

The prevention of re-entrant callbacks

should not depend on the server running at a

higher priority than the client

Variables that will be read by a notification

handler must be set before the handler exe-

cutes.

Power-up An initialisation function should not have to

run at a high priority level to ensure that a

component is fully initialized before other

activities commence

Avoid cyclic dependencies between sub-

systems and initialize them in the correct

order.

The explicit hierarchy has two advantages:

• It allows relevant properties to be identified without there being a corresponding
problem report. The approach therefore gains predictive power.

• The generic properties can be phrased in a way that pre-empts dissent when con-
sidering the impact of rules on other non-functional requirements. It is difficult
to argue against “pre-conditions should not be violated”, whereas the interaction
context specializations may not appear so clear-cut, e.g. “the client must be able
to ensure that no relevant changes are made to the system state while the pre-
con-ditions are being met” is open to debate.

 Enabling the Smooth Integration of Core Assets 145

Table 2. Properties (intents) and the principal non-functional attributes that they impact

Non-Functional Attributes Intents

P
e
rf

o
rm

an
ce

L
a
te

n
c
y

Granular-

ity

A component must never block the system long enough to compromise

its real-time behavior

E
ff

ic
ie

n
c
y

A function should not be called repeatedly without performing a useful

action

Minimize the amount of processing carried out on the receipt of events

with hard real-time deadlines

Avoid introducing unpredictable delays when responding to events with

hard real-time deadlines

Maintaina-

bility

Complex clients require a consistent programming model.

R
eu

sa
b
il

it
y

C
o
n

fi
g

u
ra

b
il

it
y

/D
iv

e
rs

it
y

Inter-feature interaction should not be hard-wired at a lower-level than it

is defined

Functional correctness should not depend on the relative priorities of

threads

It should be possible to compose components with compatible interfaces

without information on their internal design decisions

R
e
li

ab
il

it
y

D
e
si

g
n

 f
o

r
‘P

lu
g

 a
n

d
 P

la
y

’

Complex-
ity

The state-space of a system should not be made unnecessarily large

P
re

d
ic

ta
b
il

it
y

Activities that can be initiated under several conditions should execute
the correct number of times.

State information should not be replicated

It should be clear that pre-conditions can never be violated

Policies of clients and servers must be matched

Avoid re-entrant notifications unless strictly necessary.

Designs should be insensitive to the order of completion of uncon-
strained activities

Components should never act when the global system state is inappro-
priate

Variables must be initialized before they are used

Systems should be designed to be deadlock free

The interaction between features on a shared resource should always be
managed

T
e
st

a
b
il

it
y

Cohesion

Maintain a separation of concerns

Avoid replication of functionality

Maximize cohesion

Table 2 shows the list of generic properties in relation to the principal non-
function-al requirements that they affect. In practice, this relationship is not strictly
hierarchical, and, as described in section 3.2, a graph provides a more comprehensive
view.

3.2 Derivation of Architectural Rules

Having identified the properties that should be maintained, rules are required that will
maintain them. In general, a rule identifies a set of policies, together with the

146 T. Trew

conditions under which a particular policy should be used. Policies are proposed and
then checked that they satisfy all properties, which are termed “intents”, analogously
to the form of design patterns, to indicate the purpose of the policies (a policy should
satisfy an intent in an interaction context). The framework for this check is based
upon the work of Gross and Yu[5], who showed the contribution (positive or
negative) that design patterns make to non-functional requirements (NFRs) using an
NFR softgoal graph. Their work is based upon Chung et al’s original development of
the NFR softgoal interdependency graph[4], but with design patterns used as Chung et
al’s “operationalization methods”, outside the context of a particular application. It is
this context-independence that we find most valuable, since architectural rules should
be applicable to any feature supported by the product line. Policies are at a higher-
level of abstraction than design patterns, and a qualitative record of the design
rationale is required to guide and justify their selection. Each policy is assessed for its
contribution to each of the intents and NFRs. The process of constructing the design
argumentation and, in particular, making explicit the contribution of each policy to
each intent or NFR, increases the insight into the issues to be addressed. In many
cases we find that, by considering all the NFRs in this balanced way, the range of
acceptable design choices is much smaller than had previously been thought.

Finally, architectural rules are defined, typically mandating that a specific policy
be used, together with additional constraints to ensure that the conditions that it
demands always hold. Alternatively, it might apply different policies, for example
where different NFRs are important in the different layers of the architecture.

3.3 Packaging and Dissemination

Having followed the process described so far, the rules will have been accompanied
by the specific problems that motivated them, the issues abstracted from the problems
and the design rules that justify them. For conciseness, the rules are extracted and
recast so that they are comprehensible in isolation, although the more elaborate
description remains to provide justification and background information where
necessary. Finally, many rules are expressed in terms of design patterns, either those
that are well-known in the literature or ones that are more specific to the product line.
The specific patterns address both the characteristics of Koala’s static component
binding, such as using the Notification Multicaster rather than the Observer pattern,
and composition issues, such as the Hierarchical Invariant Maintainer pattern, which
manages sharable servers, despite the changes in composition for different members
of the product line. Figure 4 illustrates how these and subsequent activities are
distributed throughout the lifecycle.

The sub-system specifications and design are created during the system design
phase, which is when the sub-system architect is responsible for identifying the
relevant rules. There has been some debate as to whether the consequences of rules
should be completely transformed into patterns of interaction[2] in the interface
specifications, or whether developers should be aware of the architectural rules
throughout development and that the interface specifications should make reference to

 Enabling the Smooth Integration of Core Assets 147

Generic
Intent

Interaction
Context

Specific
Intent

Policy

Pattern

Integration Test

Architecture

Requirements System Test

System Design

Detailed Design Module Test

Module Test

Test

Test

Exercise

Incorporate

Select

Specify

Fig. 4. Deployment of Design for Plug and Play through the development lifecycle

the relevant rules. Currently the product line interface specifications use intuitive
semantics[7], but even the most rigorous form of interface specifications, based on the
“Pre & Post” level of ISpecs[6], that are considered suitable for practical use in
Philips, would not capture all aspects of the policies in isolation, e.g. rules for where
an asynchronous call can be made in a notification delivery chain.

In the short term, the question is moot for this product line; the architectural rules
must be available explicitly to be able to guide the specification and inspection of
interfaces and the rules could not be made implicit in the specifications without
rewriting them, running to thousands of documents.

Individual developers are responsible for implementing specific components and
must be aware of the consequences of the rules within their scope. The rules naturally
force a developer to consider more than just the components to which they have been
assigned, which immediately reduces the sources of integration faults.

3.4 Testing

Of the classes of integration faults in section 2, the last five relate to the dynamic
interaction between components, which may require an infeasible number of test
cases to achieve test adequacy, even if the behavior of the components has been
specified in enough detail. Many of the rules address these classes through the
introduction of mechanisms that manage the interactions between components,
transforming the integration testing problem into comprehensive local tests of the
mechanism in each component and then simply exercising the composition with some
typical scenarios, as indicated in figure 4. This shift in the balance of test
responsibility to the core assets justifies the term “Design for Plug and Play” and goes
some way to reducing the bottleneck of testing in product-line development.
Following integration, it may be valuable to check that the policies are being honored,
e.g. by using assertions during system testing.

148 T. Trew

Examples of mechanisms include handshakes or numbered transactions to elimi-
nate race conditions, and hierarchical invariant maintainers for cases where a
shareable server is controlled by multiple clients. Standard component testing, static
analysis and inspection techniques can be used to test the mechanisms, which only
have to be performed once for core assets.

The first four classes of integration faults in section 2 can reasonably be addressed
by testing, although improvements to interface specifications[6] will both reduce the
likelihood of their occurrence and increase the effectiveness of inspections.

4 Deployment

Establishing and packaging a set of architectural rules for a product line is a
significant challenge, but actually re-engineering core assets according to the rules is
more complex, given the continuous pressure on development teams to deliver new
products, while adding new features to support digital TV standards and new display
technologies. The principal obstacle to re-engineering is the cost of revalidating new
sub-sys-tems, rather than the effort required to implement the changes, which would
be relatively minor. Nevertheless, a new Applications sub-system has been created
that conforms to the rules, particularly with respect to handling the major transitions
(see figure 3) that occur when changing between modes in the TV. A major
transition requires state changes in several unrelated, but potentially interfering,
features that takes sufficient time that new system inputs cannot be deferred during
the transition. The rules achieve a clear separation between the concerns of handling
new user inputs, managing the interactions between features and managing the sub-
transitions within one feature. The results have been promising, with many fewer
faults found during integration than in previous versions. However, this must be
viewed with caution, since any re-engineer-ing activity should deliver positive results.
Opportunities are being sought to trial the rules at lower levels in the system but here
the reusability of the TV Services sub-system has meant that there has been little need
for it to be changed. An important aspect of the rules is that it is generally possible to
introduce them incrementally, rather than having to upgrade all sub-systems
simultaneously. Smaller new developments are being considered for a pilot, to
confirm that the rules really address all the integration issues, before wide-scale
deployment in as complex a product line as high-end TV.

5 Conclusions

The selection of different combinations of sub-system variants is one of the diversity
mechanisms in Philips high-end TV product line. Consequently, it is vital that a sub-
system performs correctly with any valid implementation of its required interfaces,
rather than being tuned to a specific implementation. In the early days of the product
line development it was assumed that reliable integration could be achieved by
adequate testing of interfaces. Subsequently, the integration strategy used in practice
tended to tune sub-systems to each other, which hampered the introduction of new
sub-system instances. Having developed an improved understanding of the

 Enabling the Smooth Integration of Core Assets 149

integration testing obligations, it became clear that the original ambitions of the
product family could only be realized if more rules were introduced. These, inter
alia, reduce the dependency of one sub-system on the state space of others and its
sensitivity to the interleaving of function calls and notifications.

A root cause analysis of about 900 problem reports from the product line allowed
rules to be identified that would have avoided many problems entirely and, by
incorporating them in a matrix of intents and interaction contexts, to both generalize
them and provide a structure that permits the relevant rules to be identified from the
beginning of sub-system design. Relating these to a hierarchy of non-functional
requirements ensures that other aspects, such as performance and reusability, are also
given appropriate weight in formulating the rules.

The rules have been exercised when re-engineering the Applications sub-system.
Their wider use in the product line depends upon there being a business case for re-
en-gineering other sub-systems, but smaller product developments are being sought to
demonstrate their effectiveness in reducing integration problems.

Acknowledgements. I would like to thank Nitin Koppalkar and M.R. Narasimha-
murthy of Philips Research, Bangalore, for their contributions to the problem analysis
that informed this work.

References

[1] “Product Line Hall of Fame”, http://www.sei.cmu.edu/productlines/plp_hof.html.
[2] Felix Bachmann et al, “Technical Concepts of Component-Based Software Engineering”,

SEI Tech. Report CMU/SEI-2000-TR-008, 2000.
[3] Alan Burns et al, “Guide for the use of the Ada Ravenscar Profile in High Integrity Sys-

tems”, University of York Technical Report YCS-2003-348, January, 2003.
[4] L. Chung et al, Non-Functional Requirements In Software Engineering, Kluwer Academic,

2000.
[5] Daniel Gross and Eric Yu, “From Non-Functional Requirements to Design Through Pat-

terns”, Requirements Engineering, 6(1), pp.18-36, 2001.
[6] Hans Jonkers, “ISpec: Towards Practical and Sound Interface Specifications”,W.

Grieskamp et al (eds.) IFM 2000, LNCS 1945, pp. 116–135, Springer-Verlag, 2000.
[7] Eivind Nordby and Martin Blom, “Semantic Integrity in CBD”, Ivica Crnkovic and

Magnus Larsson (eds.) Building Reliable Component-Based Software Systems, Artech
House, 2002.

[8] Rob van Ommering, “The Koala Component Model”, Ivica Crnkovic, Magnus Larsson
(eds.) Building Reliable Component-Based Software Systems, Artech House, 2002.

[9] Tim Trew, “What Design Policies must Testers Demand from Product Line Architects?”,
Proc. Int. Workshop on Software Product Line Testing, 2004.

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 150 – 161, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Design Verification for Product Line Development

Tomoji Kishi1, Natsuko Noda2, and Takuya Katayama1

1 School of Information Science, JAIST-Japan Advanced Institute of Science and Technology,
1-1 Asahidai, Noumi-city, 923-1292 Ishikawa, Japan

{tkishi, katayama}@jaist.ac.jp
2 NEC Corporation, Igarashi-Bldg, 2-11-5 Shibaura, Minato-ku, 108-8557 Tokyo, Japan

n-noda@cw.jp.nec.com

Abstract. Our society is becoming increasingly dependent on embedded soft-
ware, and its reliability becomes more and more important. Although we can
utilize powerful scientific methods such as model checking techniques to de-
velop reliable embedded software, it is expensive to apply these methods to
consumer embedded software development. In this paper, we propose an appli-
cation of model checking techniques for design verification in product line de-
velopment (PLD). We introduce reusable verification models in which we de-
fine variation points, and we show how to define traceability among feature
models, design models and verification models. The reuse of verification mod-
els in PLD not only enables the systematic design verification of each product
but also reduces the cost of applying model checking techniques.

1 Introduction

The recent advances in embedded and ubiquitous computing technologies increase the
societal dependence on embedded software, and its reliability becomes more and
more important. Until recently, the size and complexity of embedded software was
relatively small, and the development style was implementation centric. However, in
recent times, embedded software has become larger, and the development period has
become shorter. Thereby, such conventional development style is becoming obsolete.
Against this background, we began an industry-university joint project in 2003, sup-
ported by the Ministry of Education, Culture, Sports, Science and Technology, Japan,
to develop a design environment for highly-reliable embedded software [10] utilizing
model checking techniques [2].

Since most embedded systems reacts against events caused by physical phenom-
ena, they have to handle every possible event occurrence and event sequence. There-
fore, as compared to the design of business applications, the design of embedded
systems requires a more exhaustive checking. Model checking techniques are promis-
ing techniques for such design verification; however, the application of such scientific
techniques is expensive because it is time-consuming, and requires technical exper-
tise. This makes it difficult to introduce these techniques in consumer embedded
software development, such as in automobile and consumer-electronics fields.

In this paper, we introduce an application of model checking techniques in product
line development (PLD) [11]. We observe that this has the following advantages.

 Design Verification for Product Line Development 151

Firstly, since it is common for embedded software developer to develop families of
software, applying the techniques in PLD is reasonable. Secondly, in PLD, the design
verification becomes important; because each time we develop a product, it is neces-
sary to design the product based on the core asset and check whether the design satis-
fies the selected features. Thirdly, we can expect to reduce the cost of applying model
checking techniques by reusing the verification model in PLD.

In section , we explain how to apply model checking techniques in design verifi-
cation. In section , we propose techniques to define variation points in a verification
model in order to accommodate the variability in a product family. In section , we
show the method of organizing core assets in order to reuse the verification model
systematically. In section , we introduce our support environment. In section , we
evaluate our approach, and in section , we present some technical discussions.

2 Design Verification

In this section, we clarify the type of design verification that was examined and the
method of applying model checking techniques to the verification.

2.1 Design Testing Based on Test Scenario

In this study, we examined a family of embedded software for a vehicle lighting sys-
tem (VLS) that controls the interior lights of an automobile, based on the statuses of
the door, locking, ignition, etc. Although the size of the software is not very large,
hundreds of VLS products are developed every year; they have several common char-
acteristics as well as different features depending on the light type (such as room light
and foot light), vehicle type, grade, and target market. The manufacturer designs the
system and subsequently order contractors to implement the system. Therefore, it is
important to check the validity of the design in a short time period. Our objective is to
support this type of design verification in PLD.

Among the many issues that have to be verified, the main issue in the project is to
check the validity of the software design on based on test scenarios. A test scenario is
a set of event sequences that are expected to make the target system move into a spe-
cific state; it can be defined as a quadruplet (T, I, {S}, F), where T denotes target sys-
tem, I denotes the initial state of T, {S} denotes a set of event sequences sent to T from
external entities, and F denotes the final state of T. In other words, design verification
based on test scenarios (we term it “design testing”) is an activity to check whether
the target design model of state I moves into state F after receiving an event sequence
included in {S}. It should be noted that, in this paper, how to prepare good test scenar-
ios is outside the scope of this paper.

2.2 Applying Model Checking Techniques

One of the most common techniques to verify the design is reviewing. Although re-
viewing is a useful technique, it is not effective for exhaustive checking since it is
performed manually. We can also verify the design by using tools such as design

7
 65

4
3

 2

152 T. Kishi, N. Noda, and T. Katayama

simulators and can actually execute the design model. However, we only check an
event sequence one by one. In order to realize more exhaustive checking, we examine
the application of model checking techniques for design testing.

ACTOR SYSTEM

E (environment model) T (target model)

RUN END IDLE

S0

S1

^e1

^e2

^e3
e1

e2

e3
e3

P (property) [] (ACTOR@END -> <> (SYSTEM@IDLE))

Fig. 1. Example of the Verification Model

A typical use of model checking techniques is to describe the target system and its
environment as a state model, give some logical properties, and automatically check
whether the given property holds. Based on this scheme, we develop a verification
model (T, E, P) for each test scenario (T, I, {S}, F). Here, T denotes a target model
similar to the one referred to in the test scenario, E denotes the environment model
that sends event sequences included in {S} to T, and P denotes the property that ex-
presses “if the target T in state I receives any event sequence included in {S}, eventu-
ally, it falls into state F.” We can test the design model in terms of the test scenario by
combining T and E and applying the model checker to verify whether the P holds.

Fig. 1 shows an example of the verification model. The right hand side shows the
target model T and the left hand side shows the environment model E. The property P
is expressed in our extended representation of LTL (Linear Temporal Logic) formula
as “[] (ACTOR@END -> <> (SYSTEM@IDLE))” (whenever ACTOR reaches the
state END, SYSTEM eventually reaches the state IDLE). We can check the model
(combination of the target and environment models) along with the property by using
a model checker. Thus, we can exhaustively check the test scenario because a model
checker can handle generic test scenario expressed in regular expression (which is
equivalent to state model).

3 Reusable Verification Model

In this section, we examine techniques to make the verification model reusable.

3.1 Context of Reuse

PLD comprises two phases—developing core assets for product families (domain
engineering phase) and developing each product with the core assets (application
engineering phase) [1, 3, 13]. We intend to apply our design testing to the application
engineering phase. In other words, before actually implementing the product, we want
to check whether its design correctly realizes the required features. Since products in

 Design Verification for Product Line Development 153

a product family are similar, the test scenarios for each product are also similar.
Therefore, similar to a reusable design model, we can develop a reusable verification
model that can be applied to multiple products in a family.

Intuitively speaking, we define generic verification models, i.e., generic environ-
ment models and properties that can be applied to every product, and we reuse them
throughout the PLD. If some parts of the environment model or properties differ
among products, we define variation points at these points, further, we prepare vari-
ants for them. When we select a feature for a product, we identify the variants that
correspond to the feature and apply the variants to the variation point in order to de-
fine the corresponding verification model.

3.2 Variation Points in a Verification Model

In order to examine reuse in PLD, we have classified the software design into the
following three levels:

 Shared Architecture (SA) level: The component structure (configuration of com-
ponents) that is shared by all products. This level corresponds to the frozen spot
of product line architecture (PLA) and should be built and verified in the domain
engineering phase. We generally need not re-verify its properties in the applica-
tion engineering phase.

 Derived Architecture (DA) level: The component structure that may differ accord-
ing to the product. In this case, derived implies that these structures are among
the variations of PLA. Fig. 2 shows the PLA of VLS. “S-Fix” fixes sensor values
from (generally multiple) “SENSOR,” (generally multiple) “CTRL” decides the
light control based on some sensor values, and “L-Ctrl” (light control) gathers
the results and determines the actual light control. The number and type of
“SENSOR” and “CTRL” may differ according to the product. “P-Setting” (pa-
rameter setting) is an optional component that stores parameter values. From this
PLA, we can derive a variety of architectures. In the application engineering
phase, we decide the concrete architecture for the product.

 Component (CO) level: Internal structure of each component. As each product has
different component structure (in the DA level), each component can handle dif-
ferent events from different components. Further, each component can have dif-
ferent behavior depending on the product. In application engineering, we need to
verify whether a design realizes the intended behavior.

S-Fix L-Ctrl

VLS

LightSENSOR CTRL

P-Setting

N 1 N 11 N 1 N

<<refer>> <<refer>>

0..1

N

0..1

1

Fig. 2. Product Line Architecture (static structure) of VLS

154 T. Kishi, N. Noda, and T. Katayama

Fig. 3 shows an example of a reusable verification model. The upper side shows a
part of the design models of two products A and B. Product A has one sensor, “D-
Sensor” (door sensor) and Product B has two sensors, “D-Sensor” and “G-Sensor”
(gear position sensor). Since the input events are different, the state models for “S-
Fix” and “D-ctrl” (door control) are different. Assume that our verification target is
“S-Fix” and “D-Ctrl,” and we want to verify the property “one of the doors is
unlocked, and then ’all door lock’ is issued, then system falls into some specific
state”. When we verify the design of product A, the environment model includes only
“D-Sensor,” and the state model for “D-Sensor” is developed so as to send the event
sequences included in the above test scenario. On the other hand, when we verify the
design of product B, the environment model includes not only “D-Sensor” but also
“G-Sensor.” In this case, the state model for “G-Sensor” sends arbitrary event se-
quences that may be shuffled with events from “D-Sensor.”

S-Fix D-CtrlD-Sensor

G-Sensor

^P-unlock

^R-unlock

^D-unlock

^L-unlock ^ALL-lock

^Drv

^2nd

^Ntr

END <<//OPTIONAL>>

<<//OPTIONAL>>

[] (D-Sensor@END -> <> (D-Ctrl@....))

S-Fix D-CtrlD-Sensor S-Fix D-CtrlD-Sensor

G-Sensor

Product A Product B

SSA SDBSSBSDA

E (environment model) T (target model)

P (property)

^ALL-unlock
//OPTIONAL

Fig. 3. Example of a Reusable Verification Model

The lower side of the figure shows a reusable verification model for both products.
We do not use “G-Sensor” when we verify product A, but we use it when we verify
product B. Therefore, “G-Sensor” in an environment model is defined as optional
(denoted as “<<//OPTIONAL>>”). Further, each “D-Sensor” has a slightly different
event set, and the state model of “D-Sensor” has optional transitions (denoted as
“//OPTIONAL”). When we verify a product, we derive state models for target com-
ponents from the design models (“SSA” and “SDA” for product A, and “SSB” and
“SDB” for product B). In defining a reusable verification model for VLS, we used the
following mechanisms:

 DA level: This level is related to the variations in components and connections
defined in a static model.

 Optional component
 Optional connection

 Design Verification for Product Line Development 155

 CO level: This level is related to the variations in behavior of each component
defined in the state model.

 Alternative state model: prepare multiple state models for a component as
variants. Strictly speaking, we define alternative components that have
multiple components as variants; each has its own state model.

 Optional transition
 Alternative guard, conditions: prepare multiple guards/actions as variants.

We also define optional and alternative parts in the properties.

4 Organizing Core Assets

In this section, we show how to organize core assets and how to manage traceability
among feature models, design models, and verification models.

4.1 Feature Model and Extended Design Model

In the feature model, we hierarchically depict the features of a product family. The
features can be mandatory, optional, or alternative [8]. Fig. 4 shows a part of the fea-
ture model of VLS. In this case, “SENSOR” implies the abstraction of sensors,
“CONTEXT” implies context judgment based on “SENSOR,” and “PROCESS” im-
plies functionality that is triggered or constrained by “CONTEXT” [9].

VLS

SENSOR CONTEXT PROCESS

Door Sensor

Gear Position Sensor
<<//OPTIONAL>>

Power Sensor
<<//OPTIONAL>>

Door

Gear
<<//OPTIONAL>>

Power
<<//OPTIONAL??

Light Control

Battery Control
<<//OPTIONAL>>

Fig. 4. Example of a VLS Feature Model

The design model is depicted in UML with some extensions in order to describe
PLA; namely, we introduce an optional and alternative part into class and state dia-
grams. Fig. 5 shows a part of the design model of VLS. In this figure, optional com-
ponents such as “B-Ctrl” (battery control) and “T-Ctrl” (timer control) are defined.
“S-Fix” and “L-Ctrl” are defined as alternative components and have multiple vari-
ants. We can define a different state model for each variant and switch the behavior of
alternative classes by selecting one of their variants. The notation of the state diagram
is also extended so as to describe alternative transitions, as shown in Fig. 3.

The reusable verification model (target model T and environment model E) is de-
picted by using the same notation as the design model. The properties P are given by
a textual description. Fig. 6 shows a part of the verification model of VLS. In thisveri-
fication model, sensors—such as “G-Sensor” and “D-Sensor”—belong to E, and other
components belong to T. It should be noted that the configuration of target

156 T. Kishi, N. Noda, and T. Katayama

components is the same as the design model shown in Fig. 5, and the state models for
these target components are derived from the design model. On the other hand, we
define the state model of the environment components in order to send event se-
quences included in {S} of the corresponding test scenario.

L-Ctrl
<<//ALTERNATIVE>>D-Sensor S-Fix

<<//ALTERNATIVE>>

S-Fix_D
<<//VARIANT>>

S-Fix_DLP
<<//VARIANT>>

S-Fix_DLPG
<<//VARIANT>>

B-Ctrl
<<//OPTIONAL>>

T-Ctrl
<<//OPTIONAL>>

D-Ctrl
L-Ctrl_H

<<//VARIANT>>

L-Ctrl_M
<<//VARIANT>>

L-Ctrl_L
<<//VARIANT>>

G-Sensor
[OPTIONAL]

…

… …

Fig. 5. Example of a VLS Design Model

L-CtrlD-Sensor
<<//ALTERNATIVE>>

S-Fix

B-Ctrl
<<//OPTIONAL>>

T-Ctrl
<<//OPTIONAL>>

D-Ctrl
D-Sensor_S001

<<//VARIANT>>

D-Sensor_S002
<<//VARIANT>>

D-Sensor_S003
<<//VARIANT>>

G-Sensor
<<//OPTIONAL>>…

…

PS001: [] (D-Sensor@END -> <> (D-Ctrl@....)
PS002: [] (D-Sensor@END -> <> (D-Ctrl@....)
PS003: [] (D-Sensor@END -> <> (D-Ctrl@....)…

Fig. 6. Example of a VLS Verification Model

Since a target generally has multiple test scenarios, we prepare multiple verifica-
tion models. Since the static structure of each verification model is generally the
same, we can organize multiple verification models into one verification model utiliz-
ing the alternative notation. In Fig. 6, the environment component “D-sensor” is de-
fined as an alternative component. Each variant (such as “D-Sensor_S001” and “D-
Sensor_S002”) corresponds to a different test scenario. Descriptions such as “PS001”
and “PS002” are properties that correspond to a test scenario.

4.2 Traceability

We define the following links among the models explained in section 4.1 so as to
systematically obtain the verification model for a specific test scenario (Fig. 7).

 Product names and features: For each product in product families, define links
between the product name and its features in a feature model. Using these links,
we can identify the features of a product in a product family.

 Design Verification for Product Line Development 157

 Features and constituents of the design model and verification model: For each
feature, define the links between the feature and components, connections, tran-
sitions/guards/actions in the design and verification models. Using these links,
we can identify a design model for the product as well as a verification model
with alternative parts (since a product generally has multiple test scenarios, the
verification model for a product has multiple variants corresponding to them).

 Product and test scenario names: For each product, define links between the prod-
uct and test scenario names. Using these links, we can identify test scenario
names related to the product.

 Test scenario names and variants in the verification model: For each test scenario
name, define links between it and the variants in the verification model. These
links can be used to identify variants corresponding to the test scenario.

Product name Feature in FM Constituent in DM

Constituent in VM

Variant in VMTest scenario name

N N N N

N N

N N

N

N
FM: Feature model
DM: Design model
VM: Verification model

Fig. 7. Overview of Links among Models

5 Support Environment

In order to support the above design verification in PLD, we developed a support
environment. This environment is developed on the Eclipse platform [4], and utilizes
a UML plug-in [14] as the UML modeler and a SPIN model checker [6] as the model
checking tool. The main features of the environment (Fig. 8) are as follows:

 Modeler: Define feature model, design model, and verification model along with
their properties.

 Link Manager: Define links among models; further, identify the design model for a
product and the corresponding verification model.

 Translator: Combine the target (defined in the design model) and verification mod-
els; subsequently, translate it into a format that can be understood by a model
checking tool (Promela language for a SPIN model checker).

 Viewer: Show the verification result (counter example shown by the model
checker) as a UML sequence diagram.

The translator merges the state models for target components defined in the design
model with those of the verification model. For example, when we verify product A
in Fig. 3, we assign “SSA” and “SDA” to the state models for “S-Fix” and “D-Ctrl,”
respectively, in the target model T. We then translate it into Promela choosing the
necessary information for design testing. A class diagram is translated into Promela
using the rules in Table. 1

158 T. Kishi, N. Noda, and T. Katayama

Modeler Link Manager ViewerSPINTranslator

Models Design Model
(for a product)

Promela

Links

Properties Verification Model
(for a test scenario)

Result

Fig. 8. Overview of the Support Environment

Table 1. Outline of Mapping Rules

Verification model Promela
Class with stereotype
<<process>>

Process that have the behavior (defined in the corre-
sponding state model)

Attributes of class Global variables
Association with stereotype
<<channel>>

Channel exclusively used by two processes partici-
pating in the link

Association with stereotype
<<shard_channel>>

Channel used by more than two processes

A state diagram is translated into the following Promela code segment, and it is
embedded into the body of the corresponding process code.

<state_name>:
 <entry action>
 if
 :: <guard condition> ->
 <exit action>; goto <next_state_name>

 fi

Here, the state name is mapped onto the label, and each outgoing transition is mapped
onto the selection construct (statement begin with “::”) of an if-statement. This im-
plies that each transition is selected non-deterministically, and the model checker
checks every possible execution sequence.

Along with these mapping rules, we also extend the notation of LTL to enable the
referring of UML identifiers in LTL; for example, we can refer to a class attribute as
“<class name>[id].<attribute name>,” execution of the first statement in a state of a
class as “<class name>[id]@<state name>,” execution of any statement in a state of a
class as “<class name>[id]@@<state name>,” etc. (“id” is an integer assigned to each
instance of a class). In order to set the initial state I of the target, the environment
model may be designed to send an event sequence to the target for initialization.
However, this may complicate the environment model. Therefore, in our support
environment, we developed a capability to directly set the value of each attribute and
specify the initial state of each object.

Fig. 9 shows a snapshot of the support environment. The upper side shows the de-
sign model, the right side shows the translated Promela language, and the lower side
shows the counter example presented in the sequence diagram.

 Design Verification for Product Line Development 159

Fig. 9. Snapshot of the Support Environment

6 Evaluation

In this section, we evaluate our approach based on actual test cases obtained from the
industry. Firstly, the extent to which our verification model is applicable to actual
verification was evaluated; it was found to be as follows:

 By our design testing, we can verify 70% of the 113 test cases provided by the
industry. We can partially check 7% of the test cases since they include real-time
aspects. For example, suppose a test case—“A happens in 100 ms after B hap-
pens.” In this test case, we can only check that “A happens after B happens”;
however, we cannot check whether it happens in 100 ms.

 We can reduce 10% of the test cases since the verification model is defined in a
general form (i.e., as a state model) and one state model in E can be used to
check more than two test cases. Except for the initial states, 27% of the test cases
are identical to other test cases; and they can be easily defined.

Secondly, we evaluated how well our verification model can be reused. We ex-
amined three types of products (say A, B, and C) and found the following:

 We can accommodate the variations in system configurations using the optional
and alternative parts. Although each product has a different type and number of
“SENSORS” and “CTRL,” as explained in section 3.2, we can define a single
reusable verification model by using optional and alternative components.

 Among the test cases that can be checked by our approach, 70% are reusable
among three products; we can define a reusable verification model for them.
Since 30% of the test cases are applicable only to product A, and we have to de-
velop a verification model for product A alone.

160 T. Kishi, N. Noda, and T. Katayama

7 Discussion

In this paper, we proposed design testing based on test scenarios utilizing model
checking techniques. Since scenario-based testing is common in the development of
reactive embedded systems, we believe that our approach is widely applicable.

We have examined the “light-weight” application of formal methods to design test-
ing. We cannot rigorously prove the validity of the design; however, we can expect to
check the validity more exhaustively as compared with conventional reviewing and
ordinary testing. Applying model checking techniques to design testing based on test
scenarios is not new, and there are similar approaches [12, 15]. However, the reuse of
the verification model and organizing a reusable verification model along with the
feature and design models are our contributions. PLD is a good application area for a
formal approach because we can expect to reduce the cost by reusing the verification
model throughout the development of the product family.

One of the problems of model checking techniques is state explosion. In order to
avoid this, we have to adopt techniques such as design abstraction and assume guar-
antee techniques [5]. For design abstraction, we have defined a mapping rule from the
design model to Promela. Although we prepared a problem-specific rule this time, we
generally need multiple rules depending on the verification objectives. We could
adopt some assume guarantee techniques in our scheme; however, we do not explic-
itly support it because the techniques still have various limits and constraints. Instead,
we used conventional step-wise verification—verify a part of the design model by
defining its environment as stubs in order to reduce the complexity.

In product line community, testing has become an important issue [7]. This is be-
cause even if products can be developed quickly, they cannot be released until they
are efficiently tested. Although our design testing is intended to be used in the appli-
cation engineering phase, other types of verification are required in the domain engi-
neering phase, such as verification of the validity of the SA-level (shared architecture
level) design. This is one topic for our future study.

8 Conclusion

In this paper, we examined the light-weight application of model checking techniques
to design the testing for embedded software. In order to apply the design testing to
PLD, we proposed a reusable verification model and a method of organizing them in
core assets in order to enable their systematic reuse in the application engineering
phase. We believe that PLD is one of the best application areas for formal methods,
and our contribution is to show a framework for the application of formal methods in
PLD. In future, we intend to increase the number of case studies, and enhance and
refine the framework.

References

1. Bosch, J.: Design and Use of Software Architectures. Addison-Wesley, (2000)
2. Clarke, E., Grumberg, O., Peled, D.: Model Checking: MIT (1999)

 Design Verification for Product Line Development 161

3. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns, Addison-
Wesley (2001)

4. http://www.eclipse.org/
5. Giannakopoulou, D., Pasareanu, C.S.: Assume-Guarantee Verification of Source Code

with Design-Level Assumptions. 26th International Conference on Software Engineering
(ICSE’04) (2004).

6. Holzmann, G.J.: The model checker SPIN. IEEE Trans. on Software Engineering 23 (5)
(1997) 279–295

7. Jamie, J. et al.: Test Case Management of Controls Product Line Points of Variability. In-
ternational Workshop on Software Product Line Testing. (SPLiT 2004) (2004)

8. Kang, K. et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study. CUM/SEI-
90-TR-21 (1990)

9. Kishi, T., Noda, N.: Aspect-Oriented Context Modeling for Embedded Systems. Aspect-
Oriented Requirements Engineering and Architecture Design (Early Aspects 2004) (2004)

10. Kishi, T. et al.: Project Report: High Reliable Object-Oriented Embedded Software De-
sign. The 2nd IEEE Workshop on Software Technology for Embedded and Ubiquitous
Computing Systems (WSTFEUS’04) (2004).

11. Kishi, T., Noda, N.: Design Testing for Product Line Development based on Test Scenar-
ios. International Workshop on Software Product Line Testing, (SPLiT 2004), (2004)

12. Lilius, J., Paltor, I. P.: vUML: a Tool for Verifying UML Models. TUCS Technical Report
No. 272 (1999)

13. Northrop, L.M.: SEI’s Software Product Line Tenets. IEEE Software, 19(4) (2002) 32–40,
14. http://www.eclipseuml.com/
15. Schäfer T., Knapp A., Merz, S.: Model Checking UML State Machines and Collabora-

tions. Electronic Notes in Theoretical Computer Science 55(3) (2001)

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 162 – 173, 2005.
© Springer-Verlag Berlin Heidelberg 2005

QFD-PPP: Product Line Portfolio Planning Using
Quality Function Deployment

Andreas Helferich, Georg Herzwurm, and Sixten Schockert

Universität Stuttgart,
Chair of Information Systems II (Business Software),

Breitscheidstr. 2c, 70174 Stuttgart, Germany
{Helferich, Herzwurm, Schockert}@wi.uni-stuttgart.de

Abstract. In today’s competitive business environment, it is extremely
important to offer customers exactly the products they want. Software product
lines have the potential to enable companies to offer a large variety of products
while still being able to manage the complexity caused by this increased
number of products. But offering a large range of variants does not necessarily
mean increased profits, as many manufacturing companies had to notice in the
early 1990ies. The task of Product Portfolio Planning is the development of a
product portfolio that optimally satisfies customer demands and at the same
time restricts the number of products offered. Quality Function Deployment
(QFD) is a well-known and successfully used Quality Management method that
can help companies to identify true customer needs and the features needed to
fulfil these needs. This paper demonstrates how QFD can be used for Product
Portfolio Planning, thus offering potentially great benefits.

1 Introduction

One of the main reasons for adopting Software Product Lines is the possibility of fast,
economical and high quality development of new products (systems). Both time-to-
market and maintenance effort are expected to decrease, while customer satisfaction
is expected to increase since the software can be developed faster, in higher quality,
and for more individual purposes [1]. But adopting a Software Product Line approach
does not guarantee success: as many manufacturing companies learned in the 1990ies,
offering too many products leads to substantial complexity costs, endangering profits
[2]. A large part of these costs don’t apply for software, since software is an
intangible product. For example purchasing, handling or stocking raw materials,
components or spare parts. But another part of the costs does apply for software:
developing, deploying and maintaining assets, including testing, bug-fixing and
upgrading systems once they are rolled-out. These tasks should not be understated.
Especially in the domain of Information Systems, where one system hardly ever
operates stand-alone but usually has to operate in an environment of varying
combinations of hardware, operating systems, data bases, middleware, other software
running on the same computer or on separate computers but exchanging data with
each other. And the more components and/or products (as combinations of

 QFD-PPP: Product Line Portfolio Planning Using Quality Function Deployment 163

components) a company offers, the more difficult this task will be. Software Product
Lines with a well-defined architecture using commonality and variance well go a long
way in reducing these problems, as do the right processes for configuration
management, version management, requirements management and change
management. Nonetheless, every additional product introduces some complexity and
additional cost. Therefore, carefully planning and selecting the members of a product
line is an important function.

But existing literature on Software Product Lines often treats the selection of
products as input provided by the marketing department [3]. Unfortunately, research
in both requirements engineering for software and product design for various kinds of
products has shown that customers have huge difficulties in articulating their
requirements. Therefore, we propose adapting the well-known Quality Management
method Quality Function Deployment (QFD) for the use with Software Product Lines
since this method has been successfully used to identify the true customer
requirements in various industries, among them software [4].

Chapter two details why product portfolio planning for Software Product Lines is
important. In chapter three, a brief introduction to QFD is given and the authors’ new
method for product portfolio planning using QFD is explained. Related work from the
domains of Software Product Line Engineering and Quality Function Deployment is
presented in chapter four, followed by the conclusions.

2 The Importance of Product Portfolio Planning

Product Portfolio Planning is a management activity closely associated with product
development. Integrating information about technical innovations, market demand,
cultural and legal developments, Product Portfolio Planning tries to develop a
portfolio of products that optimally satisfies customer demands (thereby leading to
increased sales) and at the same time restricts the number of products offered (thereby
reducing costs and the risk of new products “cannibalising” old products’ sales, i.e.
customers buying the new product instead of an existing one). In an advanced stage,
this includes planning for several product generations, taking into account technology
S-curves and technology roadmaps [5].

For a (software) product line, product portfolio planning seeks to answer the
following questions:

• Which products should be members of the product line?
• What technologies should members of the product line utilize?
• Which features/technologies should be common to all members of the product

line?
• What should be the differences between members of the product line?
• In what direction should the product line and its members evolve?

From a business point of view, the answers are quite easy in theory: there should
be as many different members of a product line as are necessary to satisfy the needs
of the customers in the planned, profitable market segment. The common “core”
consists of all features common to all members of the product line. The differences

164 A. Helferich, G. Herzwurm, and S. Schockert

result directly from the different needs of different customers in this market segment.
And the technology used is the one best satisfying customer needs (including the need
“reasonable price”).

In practice, none of these answers is easy, since customer needs are not easily
identified and prioritized. The latter is necessary since some customer needs are
conflicting, e.g. ease of use and a multitude of functions. Kano’s Attractive Quality
Model [6] provides some insight why even the customers themselves have problems
stating their true needs. According to the model, customer needs can be classified into
the three categories: Must-be or Basic Attributes, One-dimensional or Performance
Attributes, and Attractive or Exciting Attributes. And according to Kano, only
Performance attributes are voiced by the customer since he takes Basic Attributes for
granted and Exciting Attributes are neither required nor expected by the customer.
But nevertheless identifying and fulfilling the latter leads to great satisfaction and the
willingness to pay a premium price. [7]. Finally, it is important to notice that customer
expectations change over time and today’s attractive attributes can be tomorrow’s
basic attributes [6].

Thus asking (potential) customers to fill out a questionnaire is not sufficient, rather
it is important to get a deep understanding of customer needs and cross-check with
technological opportunities [8]. Especially breakthrough innovations would never be
developed if only explicit customer demands were taken into account since they result
from exciting attributes.

Research on software requirements engineering has come to another conclusion:
since software is immaterial in nature, customers have big difficulties expressing their
expectations before using the final product [9].

Quality Function Deployment can be used to answer the questions that are part of
Product Portfolio Planning and overcome the problems associated with identifying
customer requirements for software, as will be shown in the following.

3 Product Portfolio Planning Using QFD

3.1 Quality Function Deployment

“QFD provides a systematic but more informal way of communication between
customers and developers” [10] compared to traditional ways of formalizing and
specifying product requirements. A project team consisting of customer
representatives, developers/engineers and a moderator who is an expert in QFD works
together during the whole QFD process. This is done in order to assure that the final
product’s features are not determined by the technically possible but by the fitness for
use, i.e. the features the customers demand. The software developers and/or engineers
assure that the features can be implemented and that technological breakthrough
innovations are not ignored.

The best known instrument of QFD is the so-called House of Quality (HoQ).
Generally speaking, the HoQ is the matrix which analyzes customer requirements in
detail and translates them into the developers’ language. The HoQ is the framework
of most of the matrices used in QFD. For an in-depth description of QFD see [11].

 QFD-PPP: Product Line Portfolio Planning Using Quality Function Deployment 165

QFD has been developed in the Japanese manufacturing industry [12], but can easily
be adapted towards software development if two differences are considered: first, the
software production process is basically a duplication process and implementation is
largely determined by the system design, especially the system architecture.
Therefore, the effort has to be directed mainly into the earlier stages. Secondly,
“Software […] is valued not for what it is, but for what it does” [13]. Thus, the
distinction between product function and quality element has to be made: a product
function is a “functional characteristic feature of the product, usually not measurable
(creates perceptible output)” [14], while a Quality Element is a “Non-functional
characteristic feature of the product, possibly measurable during development and
before delivery (does not create perceptible output)” [14]. The important first purpose
of QFD in software engineering and the main focus of product planning is on setting
prioritized development goals based on the most important customer requirements
[14]. In planning software products the preference setting and focusing aspects of
QFD by means of the HoQ are more important than the deployment by a matrix
sequence. Applying QFD, however, takes more than filling out a HoQ matrix. A
number of techniques (e. g. the Seven Management and Planning Tools and the Seven
Quality Tools [14]) have to be combined in order to get all information that is
necessary to form the matrices and to exhaust the potential of QFD as far as possible.

The entire QFD process is carried out by a QFD team with representatives of all
departments (development, quality management, marketing, sales, service etc.) and is
to be extended in several team meetings by the selected typical customer
representatives. Substituting a customer survey, one of the first meetings tries to
ascertain customer needs and to classify them in the Voice of the Customer Table.
These requirements are structured using affinity- and tree diagrams and weighted
(e. g. by pair-wise comparison or the Analytic Hierarchy Process [15]) by as many
members of the customer groups as possible under control of the customer
representatives. The weights of the different groups are then used to calculate the
average weight by calculating the average of the weights assigned by the customer
groups weighted with the importance of the groups.

If a new release of an existing product is developed, the customer representatives
will evaluate them according to the level of satisfaction with the current fulfilment of
the requirements (measured on a scale ranging from 1 indicating total dissatisfaction
to 5 indicating perfect satisfaction). A (subjective) comparison with competitors at the
requirements level is ineffective because customers cannot evaluate the competition’s
products as well. Thus, representatives of competing products’ customers would have
to be consulted for such a comparison to be effective.

The second major input is the Voice of the Engineer Table, compiled by the QFD
team, among them particularly developers, that includes the potential product
functions. The classic HoQ also uses measurable quality elements. These are derived
from the requirements by the developers. The relationships between product functions
and customer requirements in both prioritization matrices are identified together with
the customer representatives. Analyzing the effects that one product function has on
the other product functions leads to the roof of the HoQ [11]. Figure 1 displays an
excerpt of a Software HoQ for an email-client including the tables of customer
requirements and product functions.

166 A. Helferich, G. Herzwurm, and S. Schockert

Fig. 1. Software-HoQ for an email client (adapted from [14])

product benchmar-
king/target values

product benchmar-
king/target values

Specification
Documents

Deployment/Analysis
Project Management

etc

Software-HoQ
matrix

table of customer
requirements

classic HoQ
matrix

table of quality
elements

table of product
functions

design-points
analysis

Fig. 2. Herzwurm’s and Schockert’S PriFo Software QFD model ([14], pg. 87)

Customer
Requirements

P
ro

d
u

ct
F

u
n

ctio
n

s

Weight
in %

Write emails fast/easily

Write emails fast to
many users

Have overview of incoming
emails

Write emails not using
your hands 6.4

7.2

8.1

5.3

9 3 3

E
nter

em
ailvia vo

ice

S
p

elland
 g

ram
m

ar
ch

eck

C
reate

p
erso

n
al ad

d
res

b
o

o
k

F
ilter in

co
m

in
g

em
ails

acco
ring

to
 criteria

R
eject

em
ails

fro
m

certain
users

o
r

d
o

m
ain

s

9 9

9 3

Difficulty level

Competitor A
better

worse

Ranking

absolute Importance

relative Importance

9 3 3 1 1

26% 16% 34% 16% 8%

450 270 585 270 135

• • • •
•

2 3 1 3 5

Emails grammatically and
orthographically correct

2.3

…

… …

9

3 9

3

…

…

…

…

…

 QFD-PPP: Product Line Portfolio Planning Using Quality Function Deployment 167

Figure 2 gives an overview of the whole software development process using PriFo
QFD. This approach has been used to develop the Calendar function in SAP R/3©
[14]. A variation of PriFo QFD called Continuous QFD (C-QFD) using templates and
iterative development cycles has been used for electronic and mobile business
systems [16].

3.2 QFD-PPP

Our approach to Product Portfolio Planning makes extensive use of QFD while at the
same time introducing two new matrices. First of all, the Voice of the Customer
(VoC) is collected by asking existing and potential customers about the requirements
they have for the product line. Once these answers are collected, they are analyzed
and sorted before asking the customers to assign priorities to all requirements. Once
these priorities are assigned, customer segments are derived based on these priorities
using cluster analysis. Thus, unlike in PriFo QFD, there is no weighting of customer
groups as this is only necessary to come up with common priorities. Another
difference to PriFo QFD is the identification of customer groups not by attributes of
the customer (e.g. job title or role description) but by statistical analysis.

The next step is to bring together developers, software architects and selected
customers (based on the clusters identified) to build the Software House of Quality.
Explicitly including the Voice of the Engineer in the form of product functions is
important to identify exciting attributes according to the Kano model, i. e. software
characteristics that customers themselves would not have come up with. Since a
product function’s level of fulfilling a customer requirement is independent from the
weight assigned to the requirement, there is only one SW-HoQ for all the members of
one product line. But since the weights of the customer requirements depend on the
customer segments, the weight of the product functions does so either. The Software-
HoQ in Figure 1 equals the Software-HoQ for one of the customer groups (including
the weights), e.g. attorneys used to dictate letters who would therefore being able to
dictate emails, too. The resulting matrix, including all customer requirements and
customer segments, including the importance assigned to the requirements is shown
in Figure 3.

As indicated in Figure 3, the members of the product line are identified using the
simple rule one member of the product line per customer segment. Core and variable
features are identified by comparing the weight of the product functions for the
different customer segments. This is visualized in the second new matrix: product
functions x members of the product line displayed in Figure 4.

The software developers and software architects perform the next step evaluating
different software architectures and technologies taking into account necessary quality
attributes and product functions. This is also done by using matrices (Classic HoQ for
the quality attributes, Software HoQ for product functions), where the roof is
intensively used to analyze the impact that different architectural or technological
elements have on each other. The results of this analysis are used to decide on the
software architecture and the technologies to be used for prototypes.

168 A. Helferich, G. Herzwurm, and S. Schockert

These prototypes are then presented to the customers, thereby demonstrating
exciting features the software developers and software architects came up with and
the proposed solutions to the requirements voiced by the customers. Showing all
customers all prototypes, some of the customers will decide to include some features
they previously hadn’t assigned value to, maybe drop some features they requested.

C
u

sto
m

er
S

eg
m

en
ts

/P
ro

d
u

cts
(in

 %
)

P
ro

d
uct

L
ine M

em
b

er/
C

usto
m

er
S

eg
m

en
t #1

P
ro

d
uct

L
ine M

em
b

er/
C

u
sto

m
er

S
eg

m
en

t #2

P
ro

d
uct

L
ine M

em
b

er/
C

u
sto

m
er

S
eg

m
en

t #3

…

…

Write emails fast/easily

Write emails fast to
many users

Have overview of incoming
emails

Write emails not using
your hands

Emails grammatically and
orthographically correct

Customer
Requirements

6.4

7.2

8.1

5.3

2.3

5.3

11.2

6.3

7.4

6.8

8.1

7.5

5.3

: 10% most important
customer requirements

: 25% most important
customer requirements

Legend

Fig. 3. Matrix Customer Requirements x Customer Segments

Product Functions

P
ro

d
u

cts

Enter email via voice

Spell and grammar
check

Create personal address book

Filter incoming emails
according to criteria

P
ro

d
u

ct
L

in
e M

em
b

er
#1

P
ro

d
u

ct
L

in
e M

em
b

er
#2

P
ro

d
u

ct
L

in
e M

em
b

er
#3

…

C
o

m
p

etito
r

A

Reject emails from certain
users or domains

C
o

m
p

etito
r

B

…

: fulfilment level 100%

: fulfilment level 75%

: fulfilment level 50%

: fulfilment level 25%

: fulfilment level 0%

Legend

Fig. 4. Matrix Product Functions x Members of the Product Line

 QFD-PPP: Product Line Portfolio Planning Using Quality Function Deployment 169

This discussion is based on the product functions, not the original customer
requirements and their weights. Only when large changes are asked for the customer
requirements will be re-evaluated.

The second new (matrix product functions x members of the product line) helps
prioritizing the variants. Inputs are the expected costs for the product functions and
the expected revenue a product will achieve. The second depends on the size of the
potential market, the products currently available on the market and the customer
satisfaction with these products and the advantage the member of the product line
have over these products. Ulwick’s so-called opportunity algorithm [17] or the
algorithm used in [14] can be used as indicators here. Both algorithms use the
importance of a feature and the customers’ satisfaction with the current solutions
provided by own and competitors’ products to identify features where improvements
provide a competitive advantage. A more detailed economic assessment is presented
in [3] and [18]. Figure 5 gives an overview of this part of the process (for reasons of
clarity, classic HoQ, design-point analysis and the integration with systems design
and implementation are omitted).

Finally, derivation of new products for a Software Product Line and the evolution
of the Software Product Lines and its members are facilitated, since the already
existing matrices can be used as templates (a similar course of action for agile
software development was proposed in [16]). Using the matrices as a starting point
leads to reductions in both time-to-market and costs and helps achieving important
goals associated with Software Product Lines.

Table of
Product

Functions

Table of
Customer
Segments

P
rio

rit
ie

s
(S

iz
e

of

S
eg

m
en

t)

Assessment
• Cost
• Opportunity
•…

P
rio

rit
ie

s

Matrix
Product

Functions
X

Product Line
Members

Voice of the
Customer

Matrix
Customer
Segments

X
Customer

Requirements

Voice of the
Engineer

Table of Customer
Requirements

P
ri

or
iti

esTable of Customer
Requirements

P
rio

ri
tie

sTable of Customer
Requirements

P
rio

ri
tie

sTable of Customer
Requirements

P
rio

rit
ie

sTable of
Customer

Requirements P
rio

rit
ie

s

Table of Customer
Requirements

P
rio

rit
ie

sTable of Customer
Requirements

P
rio

rit
ie

sTable of Customer
Requirements

P
rio

rit
ie

sTable of Customer
Requirements

P
rio

rit
ie

sTable of
Customer

Requirements P
rio

rit
ie

s

n = # customers asked

Decision on
Core and
Variable
Assets

Decision on
Core and
Variable
Assets

1 Customer
Segment

1 Product Line
Member

Software
House of
Quality

Software
House of
Quality

Software
House of
Quality

Software
House of
Quality

Software
House of
Quality

Software
House of
Quality

m = # Cust. Segments

Cluster Analysis

Fig. 5. Overview of QFD-PPP (simplified)

170 A. Helferich, G. Herzwurm, and S. Schockert

4 Related Work

Related work can be classified into two categories: work from the Software Product
Line Engineering domain and from the Quality Function Deployment domain. An
important influence for QFD-PPP was PuLSE, a methodology developed at
Fraunhofer IESE. Other Software Product Line approaches differ from PuLSE in the
later stages, but their treatment of Product Portfolio Planning is similarly short, as
[19] discovered while examining requirements engineering for product lines. PuLSE
is briefly presented in 4.1.

Work from the QFD domain is related where product variants are taken into
account. However, the literature on QFD for product variants is rather thin since QFD
usually examines the development of one product and not a set of products.
Nonetheless, it is possible to use QFD for product lines and existing approaches are
presented in chapter 4.2.

4.1 PuLSE

PuLSE (Product Line Software Engineering) consists of several modules. Goal of
PuLSE is “the conception and deployment of software product lines within a large
variety of enterprise contexts” (cf. [20]). Product Portfolio Planning is considered part
of Product Line Scoping which is defined as “the management activity that
determines in which life-cycle (…) a certain functionality will be developed.” [3].
Product Portfolio Scoping is one (and logically the first) of three kinds of scoping [3]:
Product Portfolio Planning, Domain Scoping and Asset Scoping. The first deals with
the definition of the products to be developed, i.e. definition which and how many
products shall be developed and the functionality each of them shall have, but is
explicitly treated as input [3]. But an activity called Product Line Mapping (PLM) is
part of PuLSE. As Schmid points out, PLM is a technical activity, not a decision-
making activity [3]. Nonetheless, important information is provided and analyzed
during PLM: genealogy charts providing a quick overview of current and future
members of the product line, and the so-called product map, providing a rather
detailed view on the members of the product line, their features, competitor products,
and models for analyzing the economic benefits of products or domains, thus aiding
in prioritizing the development efforts. QFD-PPP basically adapts the product map
and explicitly includes identifying customer segments and managerial decision-
making. Thus an integration of QFD-PPP into PuLSE seems natural, thus integrating
QFD-PPP in a well-documented and successfully applied methodology for the
development of Software Product Lines.

4.2 QFD and Product Variation

There are a few examples in literature where QFD was used to define product
variants. These will be presented in the following paragraphs, before explaining why
these examples fall short of realizing the full potential of applying QFD for Software
Product Lines.

Hoffmann and Berger [21] extend the House of Quality by using more than one
target value per feature: they use specification classes (high, mid and low) for each

 QFD-PPP: Product Line Portfolio Planning Using Quality Function Deployment 171

product instead of one simple target value and indicate the evolution of the product
using arrows (e.g. the lower class product starts with low value for feature F14, but
the plan for the next generation is to improve F14 to medium value). Additionally,
they include information on cost reduction potential and features offered by
competitors. This approach is not suitable for a large number of products since it gets
too complex. Also it is not clear how they distinguish between the needs of different
customers or how they identify different customer groups.

Cheng et al. use QFD to derive a new product from an existing product platform as
well as to develop a new product platform, and finally to differentiate common
modules from variable module [22]. Their approach is primarily based on checking
whether a certain feature is part of the core functionality or not, and close cooperation
between Marketing, Sales and Engineering. While this approach stresses the need to
cross-check customer input with technological input, identification of customer
groups and their needs seems to depend on Marketing. Additionally, “real” (existing
and potential) customers are not included in the cross-checking process. The results of
their input are being filtered by Marketing and Sales.

Hunt and Walker [23] focus on what they call the fuzzy front-end of strategy i.e.
the questions how to obtain a sustainable position in the market and which markets to
operate in. They use QFD to gain a deep understanding of the marketplace, identify
strategic outcomes (equivalent to customer requirements) and predictive metrics
(equiv. to product functions) and identify what they call natural segments, i.e.
customer segments that “share the same perceptions about outcomes, and more
importantly who can be expected to prefer the same products or services…” [23].
Interesting about this method is the way they identify and use the natural segments:
the identification is done using statistical clustering methods, to focus they
concentrate on those outcomes that are at the same time important and where the
customer satisfaction is currently rather low [17]. Positioning is then done by using
the outcomes and calculated opportunity and taking into account competitors’
positions. The link to identification of common and variable customer requirements is
missing here, but the focus of this paper is strategy, not product development.

Fujita et al. [24] extend QFD with a so-called variety table, where the customer
functions are further analyzed with regard to customer expectations for a high-class, a
mid-market and a low-class model (small, medium and large refrigerators for the
Japanese market). Thus, in the HoQ, the weights of the customer requirements are
different according to the model, while the correlations between customer
requirements and product functions are the same for all models. Product functions
achieving a high score in fulfilling requirements that have no value for the low-class
model but low scores in those requirements important for that model, are identified as
variable requirements only needed for the high-class and maybe – depending on the
importance of the respective requirements for the mid-market model – for the mid-
market model. Additionally, they present a way to perform cost-worth analysis. This
method simplifies the question of product portfolio by defining the models first (in the
given example to three models, but theoretically, the number could be higher) and
then assigning the necessary requirements to the models. But the underlying idea of
the importance of a certain requirement depending on the customer (segment) is
important.

172 A. Helferich, G. Herzwurm, and S. Schockert

5 Conclusions

It has been demonstrated how QFD-PPP can be used to identify different customer
groups and their needs, to derive a product portfolio (i.e. members of a product line)
systematically and derive common and variable product functions including exciting
requirements that the customers would not have come up with. Thus, QFD-PPP has
the potential for increased customer-orientation and at the same time higher profits
since only products that are demanded by the customer and profitable are developed.
Also some of the more operational challenges in Software Product Line Engineering
can be tackled using QFD: von der Maßen et al. identify challenges in the categories
Organization and Management, Requirements Engineering, Product- vs. platform-
specific and Architecture [25]. Some of these problems, most notably “high
communication overhead”, “Discussions on design and not on requirements level”
and “No explicit prioritization of requirements” can easily be solved using QFD (see.
[14] for problems in Requirement Engineering and solutions provided by Software
QFD).

Validation of this approach in industrial projects is still lacking, especially the
integration into process models for Software Product Line Engineering. Also required
is further research into the clustering algorithms to be used and into the integration of
the QFD results towards later phases of the Software Product Line Engineering
Process (for a method integrating QFD and object-oriented programming see [26]).
As for Software Product Line Engineering in general, tool support is lacking.

References

1. Böllert, K. „Objektorientierte Entwicklung von Software-Produktlinien zur
Serienfertigung von Software-Systemen“. Dissertation, TU Illmenau (2002).

2. Kaplan, R. S. “New Roles for Management Accountants”. In: Journal of Cost
Management, Fall 1995, pp. 6 – 13.

3. Schmid, K.: “Planning Software Reuse – A Disciplined Scoping Approach for Software
Product Lines”. Fraunhofer IRB, Stuttgart (2003).

4. Chan, L.-W. and M.-L.Wu. “Quality function deployment - A literature review.” In:
European Journal of Operational Research 143 (2002) 463–497

5. Ulrich, K.T. and S.D. Eppinger. Product design and development - 2nd ed.. Irwin
McGraw-Hill, Boston (2000).

6. Kano, N., Seraku, N., Takahashi, F. and S.Tsuji. “Attractive quality and must-be quality.”
In: The best on quality, edited by John D. Hromi. Volume 7 of the BookSeries of the
International Academy for Quality. Milwaukee:ASQC Quality Press (1986).

7. Sauerwein, E.; Bailom, F.; Matzler, K. and H. H.Hinterhuber. “The Kano Model: How to
delight your customers”. In: Preprints Volume I of the IX. International Working Seminar
on Production Economics, Innsbruck/Igls/Austria (1996), pp. 313 -327.

8. Aasland, K.; Blankenburg, D.; and J. Reitan. „Customer and market input for product
program development“. In: Proc. of the 6th Int. Symposium on QFD, Novi Sad, USA
(2000).

9. Nuseibeh, B. and S.Easterbrook “Requirements Engineering: A Roadmap”. In: Proc. of the
Conference on The Future of Software Engineering, Limerick, Ireland (2000), pp. 35 – 46.

 QFD-PPP: Product Line Portfolio Planning Using Quality Function Deployment 173

10. Herzwurm. G.; Schockert, S. and W. Pietsch: “QFD for Customer-Focused Requirements
Engineering”. In: Proceedings of the 11th IEEE International Requirements Engineering
Conference, Monterey Bay, USA (2003), pp. 330-338.

11. Cohen, L.: “Quality Function Deployment”, Addison-Wesley, Reading (1995).
12. Akao, J.: Quality Function Deployment: Integrating Customer Requirements into Product

Design, Translated by Glenn H. Mazur and Japan Business Consultants, Ltd. Cambridge,
Massachusetts (1990).

13. Zultner, R. E.: “Software quality function deployment – the North American experience”.
In: Software Quality Concern for people. Proceedings of the Fourth European Conference
on Software Quality, Zürich (1994), pp. 143-158.

14. Herzwurm, G.; Schockert, S. and W. Mellis: Joint requirements engineering: QFD for
rapid customer-focused software and Internet-development, Vieweg, Wiesbaden,
Germany(2000).

15. Saaty, T. L.: Decision Making for Leaders: The Analytic Hierarchy Process for Decisions
in a Complex World., 3rd edition, Pittsburgh, USA (1995).

16. Herzwurm, G.; Schockert, S.; Breidung, M. and U. Dowie: “Requirements Engineering for
Mobile-Commerce Applications”, in: In: Proceedings „M-Business 2002”, Athens,
Greece.

17. Ulwick, A.W.: “Turn Customer Input into Innovation”, Harvard Business Review , 80(1)
pp. 91-97 (2002).

18. Clements, P.C.; McGregor J.D. and S.G. Cohen: “The Structured Intuitive Model for
Product Line Economics (SIMPLE)”.Technical Report CMU/SEI-2005-TR-003 (2005)

19. Kuloor C. and A. Eberlein: “Requirements Engineering for Software Product Lines”. In:
Proceedings of the 15th International Conference on Software & Systems Engineering and
their Applications (ICSSEA’02), Paris (2002).

20. Bayer, J. et al.: “PuLSE: A Methodology to Develop Software Product Lines”. In:
Proceedings of the 5th Symposium on Software Reusability, pages 122-131, 1999.

21. Hoffmann, J. and S. Berger: “Strategic Product Family Development by Extending the
House of Quality”. In: Proc. of the 6th Int. Symposium on QFD, Novi Sad, USA (2000).

22. Cheng, L.C.; Pfeilsticker, B.A. and F. de Aguiar Araujo: “An Application of QFD Method
to Strengthen Product Development System of a Small Initiating Firm in Internet Mobile
Technology”. In: Proc. 8th Int. Symposium on QFD, Munich, Germany (2002), pp. 193-
206.

23. Hunt, R.A. and M. Walker: Customer driven Strategy: Solving the Fuzy Front-End. In:
Proceedings of the 9th Int. Symposium on QFD, Orlando, USA (2003), pp. 199-210.

24. Fujita, K.; Takagi, H. and T. Nakayama: “Assessment method for value distribution for
product family deployment”. In: Proc. Int. Conference on Engineering Design, Stockholm,
Sweden (2003).

25. von der Maßen, T. et al.: Key challenges in Industrial Product Line Engineering. In
(Adelsberger, H.H. et al., ed.): Multikonferenz Wirtschaftsinformatik 2004 Band 1,
Akademische Verlagsgesellschaft Aka GmbH, Berlin (2004), pp.260-272.

26. Herzwurm. G.; Schockert, S. and S. Friebel,: “Quality Function Deployment object-
oriented – a method for the combination of Quality Function Deployment and object-
oriented modelling”. In: Proceedings of the 10Th International Symposium on QFD,
Monterrey, Mexico (2004).

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 174 – 185, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Product-Line Architecture: New Issues for Evaluation

Leire Etxeberria and Goiuria Sagardui

Computer Science Department,
University of Mondragon,

Loramendi 4, 20500, Mondragon, Spain
{letxeberria, gsagardui}@eps.mondragon.edu

Abstract. In the product-line context, where a lack or mismatch in a quality at-
tribute is potentially replicated among all products, product-line evaluation
could detect problems before concrete products are developed. The life span of
a software product-line architecture is much longer than the one of an ordinary
software product and it serves as a basis for a set of related systems. Therefore,
the product-line architecture should be adaptable to evolution as well as support
a number of different products. All these characteristics set new requirements to
the product-line architecture evaluation. This paper highlights the new issues
that can arise when evaluating a product-line architecture versus evaluating a
single-system architecture, including classifications of relevant attributes in
product-line architecture evaluation, new evaluation moments and techniques.
These issues are used as components of a framework to survey product-line ar-
chitecture evaluation methods and metrics.

1 Introduction

The software architecture has a great influence on the system’s final quality as it can
inhibit or enable product’s quality attributes. To be able to analyse the potential of an
architecture to reach the required quality levels helps to find the problems early in the
life cycle, when they are easier and cheaper to correct than in later stages such as
implementation, testing or deployment. Besides, software architecture evaluation is
helpful to improve the communication between stakeholders, improve documentation
and prioritise quality goals, among others.

The evaluation of an architecture is defined as “the systematic examination of the
extent to which an architecture fulfils requirements” [1]. The requirements can be
functional or quality attributes but as architecture’s influence on functional require-
ments is not so pronounced, almost all the evaluation methods focus on quality attrib-
utes. There are two broad categories of quality attributes [2][3]: Observable via exe-
cution or operational such as performance, security, availability, usability… and not
observable via execution or development attributes such as modifiability, portabil-
ity, reusability, integrability, testability…

In the case of product-line architectures (PLAs) the architecture assessment be-
comes crucial to ensure that the PLA is flexible enough to support different products

 Product-Line Architecture: New Issues for Evaluation 175

and to allow evolution. Another product-line specific characteristic is that there are
two level of architectural abstraction where an evaluation can be performed (software
product-line architecture and derived product architectures). To assess all the in-
stances of the product-line may not be worthwhile due to the high cost. However, it is
possible to shorten product architecture evaluations because the product architecture
evaluation is a variation of the product-line architecture evaluation as the product
architecture is a variation of the product-line architecture [4].

Organizational factors can also influence product-line architecture evaluations: a
PLA involves more stakeholders than a single system because the scope is much
larger that the one of a single-product architecture. Furthermore, stakeholders may be
from different departments in different cities and even different countries.

The classical application of architecture evaluation occurs when the software archi-
tecture or product-line architecture has been specified but before implementation
begins. However, architecture evaluation can be applied at any stage of an architec-
ture’s lifetime and particularly in product-line context new evaluation moments arise.

All these aspects of PLA must be considered when assessing and therefore they
pose several challenges for existing evaluation approaches and techniques. In this
paper a classification framework based on these aspects is proposed in order to clas-
sify product-line specific architecture evaluation methods.

The remaining of the paper is organized as follows. Section 2 introduces the attrib-
utes that are relevant in PLA evaluation. Then Section 3 introduces the evaluation
moments in a product-line context, PLA evaluation techniques are shown in Section 4
and a classification of PLA evaluation methods and metrics in Section 5. And to con-
clude Related work in Section 6 and Conclusions in Section 7.

2 Relevant Attributes in Product-Line Architecture Evaluation

In a product-line there are two levels of architectural abstraction where it is necessary
to perform an evaluation. Product-line or reference architecture1 is the basis to assess
family-specific aspects whereas concrete architecture provides the base to assess
instance-specific aspects. With regard to instance-specific aspects, instance architec-
tures should be evaluated to make sure they meet the specific behaviour and quality
requirements of the product at hand [4].

With regard to family-specific aspects, the flexibility of the PLA should be evalu-
ated to ensure it could serve as the basis for all the products of the family. It is also
necessary to assess whether the PLA is able to address future requirements and prod-
ucts, that is, assessment of the modifiability and evolution of the PLA. The family-
specific aspects ensure that the PLA addresses the required variation to get all the
products as well as the variation that will require over time.

Attributes in a reference architecture can be classified in three different types:
Product-line quality attributes, domain-relevant attributes and functional requirements
or common behaviour (see Fig. 1).

1 In the context of this paper, the terms reference architecture and product-line architecture are

used interchangeably.

176 L. Etxeberria and G. Sagardui

Concrete architectures
of products

Product Line
Architecture

• Product Line quality attributes: To be the basis for
a set of related products as well as future new products.

•Domain-relevant quality attributes: Important
quality attributes for the specific domain

•Common behaviour: the behaviour viewed as
common across product line members

•Instantiated quality attributes

•Specific behaviour

Instantiation

Instantiated
Variability

Variability
or Flexibility

Modifiability (Variation over time):
Extensibility, Portability, Scalability...

Configurability (Variation over space):
Reusability, composability, interoperability...

Performance, Safety, Security,
Reliability, Availability, Usability ...

Fig. 1. Classification of product-line requirements

Product-line quality attributes are those that are inherent or specific to prod-
uct-lines to allow the architecture to be the basis for a set of related products as
well as future new products. These attributes are the ones related to variability or
flexibility. Assessing the variability of a PLA ensures that using the product-line
architecture is possible to get all the functionality of the products in the envisioned
scope. Variability [5], understood as modifiability (to allow variation or evolution
over time) and configurability (variability in the product space) to get a set of re-
lated products.

Domain-relevant quality attributes (such as safety in safety-critical domain,
performance in real-time domain, reliability in embedded systems, etc.) should be
addressed in the PLA otherwise the implications or consequences can be very
serious and difficult to fix. As different products in the domain can require differ-
ent values in the attributes (not all products require the same level of security…),
variability in the way the attribute is translated to the product is relevant for the
assessment to assure that the realization of all the quality attributes for all the
products in the product-line scope is possible with the product-line architecture.

Although many authors do no consider the functional requirements when evalu-
ating software architectures, we reckon that in product-line architecture evaluation
should be considered because a mismatch or error in a common behaviour may be
reproduced in all the products of the line.

 Product-Line Architecture: New Issues for Evaluation 177

3 Evaluation Time

In traditional development, software architecture evaluation occurs usually during
design. In a product-line context, the evaluation of the architecture can be useful in
different moments (see Fig.2).

DOMAIN ENGINEERING

APPLICATION ENGINEERING

DESIGN

DERIVATION

Architecture
extraction

Existing
Products

PL Requirements

Existing PA
Evaluation PLA

Evaluation

Evaluation
during

derivationProduct
Requirements

t

EVOLUTION

Evolution
related PLA
Evaluation

PA
Evaluation

t

EVOLUTION

Synchronization
related

Evaluation

SYNCHRONIZATION

Evolution
related PA
Evaluation

Fig. 2. Evaluation moments in a product-line context

Usually evaluation of architectures takes place during architecture design. In prod-
uct-lines, this evaluation is replicated both at domain engineering and at application
engineering. At domain engineering, evaluation (PLA Evaluation) assures reference
architecture compliance to product-line quality attributes, domain-relevant quality
attributes and common behaviour. It can be very useful to detect problematic issues
and risks points or compare software architecture candidates to select the one that
supports best the required quality attributes. At application engineering (Product
Architecture or PA Evaluation), evaluation assures instantiated quality attributes
and product specific behaviour, as well as architectural conformance to the reference
architecture.

During evolution, it can be necessary or desirable to adapt the reference architec-
ture to include new requirements (due to new products or new product requirements).
Evaluation helps analysing the magnitude of the required architecture change (Evolu-
tion related PLA Evaluation) and thus deciding whether the requirements are con-
sidered at product-line level. Also during evolution, PLAs and PAs evolve from their
initial design and the changes could provoke quality attributes not to be supported any
longer. Evaluation in this case, is useful to assure that the architecture continues

178 L. Etxeberria and G. Sagardui

meeting its quality goals (Evolution related PLA Evaluation and Evolution related
PA Evaluation). Evolution related architecture evaluation is much related to architec-
ture recovering because sometimes an up-to-date architecture description is no longer
available.

Specific to product-lines, three new evaluation moments arise: before developing
the reference architecture (Existing product architecture Evaluation) in order to
analyse and compare existing product architectures to use them as a basis for the
product-line.

During product instantiation (Evaluation during derivation) to compare alterna-
tive variants that affect quality attributes. Product derivation consists on constructing
individual products using a subset of the shared software artefacts [6] and during this
process it is necessary to take architectural decisions that can affect the quality attrib-
utes of the product.

And during architecture update (Synchronization related Evaluation) to identify
how the modifications and maintenance of a PLA affect the products already on the
market and the opposite, how changes in the products affect PLA with the goal of
maintaining the coherence between PLA and concrete architectures (Assess the im-
pact of new requirements in products, detect variability that is not longer neces-
sary…). This kind of evaluation is very related to evolution and derivation.

It is not cost-effective to evaluate the architecture in each of the moments. The ar-
chitect must select the most appropriate moments to evaluate depending on the case.
For instance in the case of an existing product-line, PLA evaluation during design or
evaluation before developing are not applicable but evolution related PLA evaluation
may be very interesting.

4 Product-Line Architecture Evaluation Techniques

Software architecture evaluation techniques are categorized in two groups [7]: Ques-
tioning techniques (qualitative evaluation) and Measuring techniques (quantitative
evaluation). Questioning techniques include scenarios, questionnaires and checklists.
Measuring techniques include simulations, prototypes, experiments and mathematical
models (Metrics, RMA…). Questioning techniques can be used to evaluate any opera-
tional or development quality whereas measuring techniques address specific quali-
ties, usually operational ones.

Product-line quality attributes are considered not operational or development at-
tributes, so the evaluation is generally performed qualitatively. Most methods and
experiences are based on scenarios. Scenarios concretise the quality attributes that are
abstract into context dependent situations. This allows defining potential modifica-
tions to the product-line architecture and analysing the extensibility, portability, etc.
Although scenarios are very used in product-line context, the only method that pro-
vides guidelines to adapt them to product-lines is D-SAAM [8]. This method reduces
the gap between the reference architecture (abstract) and the scenarios (concrete),
introducing two types of direct scenarios: concrete and floating. Concrete scenarios
are scenarios that can be realized without changing the PLA and for which there are
guidelines. Whereas floating scenarios can be realized by the derived products but
there are not guidelines about how to do it.

 Product-Line Architecture: New Issues for Evaluation 179

Although qualitative evaluation is more frequent, there are also some metrics de-
fined to assess product-line quality attributes: the service utilization metrics [9] which
can be used to assess and improve product-line architectures and Rahman’s metrics
[10], a set of metrics for the structural assessment of product-line architectures,
adapted from component based measures.

Evaluation of domain relevant quality attributes can be performed via scenarios
but also some quantitative techniques (metrics, mathematical models, prototyping…)
are available. In real-time domain, Alonso et al [11] use RMA models to assess the
timing properties of new products of a family. In embedded system domain, Au-
erswald et al [12] present a method that performs qualitative as well as quantitative
evaluation of reliability. Zhang et al [13] propose a method to capture and analyse the
impact of variants on quality attributes using a Bayesian Belief Network (BBN). De
Lange and Kang [14] propose a product-line architecture prototyping approach using
PCs and networks to assess issues such as complexity, performance requirements...

Some communities have developed specific techniques and methods to assess their
quality attributes: performance, safety, reliability… but these approaches are not spe-
cific for product-lines, so adaptation is needed.

For functional requirement evaluation other techniques are used: Model Checking,
Theorem Proving, Proof Checking, Equivalence checking... Functional requirements
or common behaviour can be analysed with automated tool support whereas product-
line quality attributes are best supported by manual analysis techniques [15].

Due to the relevance of the variability in the product-line context, it is important to
mention that there exist techniques for identifying and studying variation points, vari-
ants and dependences.

5 Classification of Architecture Evaluation Methods and Metrics

Previous sections have analysed the different aspects of product-line architecture
evaluation. This section classifies architecture evaluation methods and approaches
that are specific for product-lines according to these aspects. This classification can be
very useful in order to select an appropriate evaluation method for the selected quality
goals and a determined phase.

For evaluating product-line architectures in design phase there are different meth-
ods: FAAM (Family Architecture Assessment Method) [1] for evaluating informa-
tion-system family’s architectures, AQA (Architecture Quality Analysis) [16] for
analysing product-line architectures, REDA2 (Reliability Evaluation of Domain Ar-
chitectures) [12] for analysing the reliability of a PLA and D-SAAM (Distributed
SAAM) [8], a variant of SAAM for evaluating reference architectures. For evaluating
existing product-line architectures: Gannod and Lutz [15] propose an approach that
evaluates quality and functional requirements, Maccari [17] proposes a method to
assess for evolution and Riva and Rosso [18] adapt Maccari’s approach.

There are some methods that assess variability, one of the key aspects in product-
lines, at architectural-level: SBA (Scenario-Based Architecting) [19] is a method for
identifying and quantifying the potential benefits of the different architectural variability

2 This abbreviated name is not original, it is used for convenience.

180 L. Etxeberria and G. Sagardui

options. And at all layers of abstraction and not only at the software architecture:
Wijnstra’s approach [20] and COSVAM (The COVAMOF Software Variability As-
sessment Method) [21].

 There are also methods oriented to evaluate existing product architectures to use
them as basis for the product-line: SACAM (Software Architecture Comparison
Analysis Method) [22] which is a method to compare architectures and Korhonen’s
approach [23] which analyse whether or not an architecture can be used as a basis for
a product-line.

To evaluate instantiated product architectures there are two methods: TPA2 (Tim-
ing Property Assessment) [11] which reuses the RMA models of individual compo-
nents to derive the global RMA model of the system and Zhang et al’s method [13]
that is used during derivation to analyse the impact of variants on quality attributes
using a Bayesian Belief Network (BBN).

There are also specific metrics defined for PLAs: service utilization metrics [9] and
Rahman’s metrics [10].

In the Table 1 these approaches are classified using previously identified aspects:
attributes that they evaluate, evaluation phase when they can be used, evaluation tech-
niques and some more general issues: process description, existing validation or case
studies and relationship with other methods.

There are some very used architecture evaluation methods that can be also used
to evaluate product-line architectures. SAAM (Software Architecture Analysis
Method) [24] and its variants. And the successor of SAAM: ATAM (Architecture
Trade-off Analysis Method) [24]. These methods are not product-line specific,
they are used for evaluating single-product architectures but they are very adequate
to address qualities that are product-line quality attributes such as maintainability
and extensibility among others. ATAM has been used in product-line context
[25][26] although there is not any special treatment in ATAM for product-line
architectures; in these case studies the product-line particular aspects are addressed
implicitly as quality requirements.

6 Related Work

There are some wider evaluation approaches such as [27] that defines a product-line
evaluation framework with four dimensions: BAPO (Business, Architecture, Process,
Organization) for determining the status of product-line engineering. Or FAE (Family
Architecture Evaluation) method [28] that is used to benchmark product-line architec-
tures. This approach not only considers quality attributes but other aspects such as the
relation between architecture and business, context, domain knowledge, etc.

Evaluation process usually goes inside a more general process or method of design.
There are quite a lot specific methods for designing product-line architectures but not
all include a specific architecture evaluation phase in their method. Some of the meth-
ods that address evaluation are: QADA [16] (AQA is part of this method), QUASAR
[29], QASAR [3], PuLSE-DSSA [30] and SEI’s PL initiative [4].

 Product-Line Architecture: New Issues for Evaluation 181

T
ab

le
 1

. C
la

ss
if

ic
at

io
n

of
 e

va
lu

at
io

n
m

et
ho

ds
 a

nd
 m

et
ri

cs

E
va

lu
at

io
n

M
et

ho
d

G
oa

l
A

tt
ri

bu
te

 T
yp

es

E
va

lu
at

io
n

P
ha

se

E
va

lu
at

io
n

T
ec

h-
ni

qu
es

P

ro
ce

ss
 D

es
cr

ip
ti

on

M
et

ho
d’

s
va

lid
at

io
n

R
el

at
io

n
w

it
h

ot
he

r
m

et
ho

ds

FA
A

M
 (

Fa
m

ily

A
rc

hi
te

ct
ur

e
A

ss
es

s-
m

en
t M

et
ho

d)
 [

1]

St
ak

eh
ol

de
r

or
ie

nt
ed

as

se
ss

m
en

t o
f

in
fo

r-
m

at
io

n-
sy

st
em

fa

m
ily

’s
 a

rc
hi

te
ct

ur
es

P
L

 q
ua

lit
ie

s:
 I

nt
er

op
er

a-
bi

lit
y,

 e
xt

en
si

bi
lit

y…

P
L

A
 e

va
lu

at
io

n
Sc

en
ar

io
s,

 o
th

er

te
ch

ni
qu

es

V
er

y
de

ta
ile

d:
 S

te
ps

,
gu

id
el

in
es

, r
ol

es
…

2

ca
se

 s
tu

di
es

 in

di
ff

er
en

t d
om

ai
ns

E

xt
en

ds

S
A

A
M

A
Q

A
 (

A
rc

hi
te

ct
ur

e
Q

ua
lit

y
A

na
ly

si
s)

[1

6]
[3

1]

A
na

ly
se

 q
ua

lit
y

at
tr

ib
ut

es
 o

f
P

L
A

P

L
 q

ua
lit

ie
s:

 R
eu

sa
bi

lit
y,

m

od
if

ia
bi

lit
y…

D

om
ai

n
qu

al
it

ie
s:

 P
er

-
fo

rm
an

ce
, r

el
ia

bi
lit

y…

P
L

A
 e

va
lu

at
io

n,

E
vo

lu
tio

n
re

la
te

d
P

L
A

 e
va

lu
at

io
n

Sc
en

ar
io

s,
 k

no
w

l-
ed

ge
 b

as
e,

 c
us

to
m

er

va
lu

e
an

al
ys

is

W
el

l e
xp

la
in

ed
:

St
ep

s,
 g

ui
de

lin
es

…

2
C

as
e

st
ud

ie
s

in

di
ff

er
en

t d
om

ai
ns

-

R
E

D
A

 (
R

el
ia

bi
lit

y
E

va
lu

at
io

n
of

 D
om

ai
n

A
rc

hi
te

ct
ur

es
)

[1
2]

E
va

lu
at

e
P

L
A

s
to

pr

ed
ic

t r
el

ia
bi

lit
y

D
om

ai
n

qu
al

it
ie

s:
 R

el
i-

ab
ili

ty

P
L

A
 e

va
lu

at
io

n
Fa

ilu
re

 c
as

es
,

qu
al

ita
ti

ve
 r

el
ia

bi
lit

y
m

od
el

 (
Q

lR
M

),

m
et

ri
cs

…

R
ea

so
na

bl
e:

 S
te

ps
,

te
ch

ni
qu

es
…

C

as
e

st
ud

y
in

au

to
m

ot
iv

e
co

nt
ro

l
sy

st
em

s

-

D
-S

A
A

M
 (

D
is

tr
ib

ut
ed

S

A
A

M
)

[8
]

E
va

lu
at

e
re

fe
re

nc
e

ar
ch

ite
ct

ur
es

 r
ed

uc
in

g
th

e
or

ga
ni

sa
tio

na
l

im
pa

ct

P
L

 q
ua

lit
ie

s:
 M

ai
nt

ai
n-

ab
ili

ty

P
L

A
 e

va
lu

at
io

n,

E
vo

lu
tio

n
re

la
te

d
P

L
A

 e
va

lu
at

io
n

Sc
en

ar
io

s
W

el
l e

xp
la

in
ed

:
St

ep
s,

 g
ui

de
lin

es
,

ro
le

s…

A
pp

li
ed

 o
n

a
co

pi
er

sy

st
em

s
P

L
A

V

ar
ia

nt
 o

f
S

A
A

M

G
an

no
d

an
d

L
ut

z’
s

ap
pr

oa
ch

 [
15

]
A

na
ly

se
 a

n
ex

is
ti

ng

P
L

A

P
L

 q
ua

lit
ie

s:
 M

od
if

ia
bi

l-
ity

C

om
m

on
 b

eh
av

io
ur

E
vo

lu
tio

n
re

la
te

d
P

L
A

 e
va

lu
at

io
n

Sc
en

ar
io

s
an

d
m

od
el

ch

ec
ki

ng

R
ea

so
na

bl
e:

 S
te

ps
,

gu
id

el
in

es
…

A

pp
lie

d
on

 a

te
le

sc
op

es
 P

L

In
cl

ud
es

 a
 s

te
p

si
m

il
ar

 to

S
A

A
M

M

ac
ca

ri
’s

 a
pp

ro
ac

h
[1

7]

A
ss

es
s

th
e

ca
pa

bi
lit

y
of

 a
 P

L
A

 to
 a

da
pt

 to

ev
ol

ut
io

n

P
L

 q
ua

lit
ie

s:
 E

vo
lu

ti
on

re

la
te

d
on

es
: S

ca
la

bi
lit

y,

m
od

if
ia

bi
lit

y…

E
vo

lu
tio

n
re

la
te

d
P

L
A

 e
va

lu
at

io
n

Sc
en

ar
io

s
B

ri
ef

ly
 e

xp
la

in
ed

 b
ut

ill

us
tr

at
ed

 th
ro

ug
h

ca
se

 s
tu

di
es

2
ca

se
 s

tu
di

es
 in

di

ff
er

en
t d

om
ai

ns

-

R
iv

a
an

d
R

os
so

’s

ap
pr

oa
ch

 [
18

]
A

ss
es

s
PL

A
s

fo
r

ev
ol

ut
io

n
P

L
 q

ua
lit

ie
s:

 F
le

xi
bi

lit
y,

m

od
if

ia
bi

lit
y

E
vo

lu
tio

n
re

la
te

d
P

L
A

 e
va

lu
at

io
n

Sc
en

ar
io

s,
 e

xp
er

i-
en

ce
-b

as
ed

 a
na

ly
si

s
E

xp
la

in
ed

 w
it

h
a

ca
se

 s
tu

dy

C
as

e
st

ud
y

in
 a

m

ob
ile

 te
rm

in
al

s
P

L
A

A
da

pt
s

M
ac

-
ca

ri
’s

 a
pp

ro
ac

h

SB
A

 (
Sc

en
ar

io
-B

as
ed

A

rc
hi

te
ct

in
g)

 [
19

][
32

]
Id

en
ti

fy
 a

nd
 q

ua
nt

if
y

th
e

be
ne

fi
ts

 o
f

di
ff

er
en

t v
ar

ia
bi

lit
y

op
tio

ns

P
L

 q
ua

lit
ie

s:
 V

ar
ia

bi
li

ty

P
L

A
 e

va
lu

at
io

n
Sc

en
ar

io
-b

as
ed

qu

an
tit

at
iv

e
an

al
ys

is

W
el

l e
xp

la
in

ed
:

St
ep

s,
 g

ui
de

lin
es

…

2
ca

se
 s

tu
di

es
 o

f
 th

e
m

ed
ic

al
 d

om
ai

n

U
se

s
SQ

U
A

S
H

 [
33

]

182 L. Etxeberria and G. Sagardui

T
ab

le

. (
co

n
t.

)
 C

la
ss

if
ic

at
io

n
 o

f
ev

al
ua

ti
o

n
m

et
ho

ds
 a

n
d

m
et

ri
cs

E
va

lu
at

io
n

M
et

ho
d

G
oa

l
A

tt
ri

bu
te

 T
yp

es

E
va

lu
at

io
n

P
ha

se

E
va

lu
at

io
n

T
ec

h-
ni

qu
es

P

ro
ce

ss
 D

es
cr

ip
ti

on

M
et

ho
d’

s
va

lid
at

io
n

R
el

at
io

n
w

it
h

ot
he

r
m

et
ho

ds

C
O

SV
A

M
 (

T
he

C

O
V

A
M

O
F

S o
ft

w
ar

e
V

ar
ia

bi
lit

y
A

ss
es

sm
en

t
M

et
ho

d)
 [

21
]

E
va

lu
at

e
th

e
va

ri
ab

il-
ity

 o
f

a
P

L
 in

 a

ev
ol

ut
io

n
co

nt
ex

t

P
L

 q
ua

lit
ie

s:
 V

ar
ia

bi
l-

ity

E
vo

lu
tio

n
re

la
te

d
P

L
A

ev

al
ua

ti
on

, E
va

lu
at

io
n

du
ri

ng
 d

er
iv

at
io

n,

S
yn

ch
ro

ni
za

tio
n

re
la

te
d

ev
al

ua
ti

on

Pr
od

uc
t s

ce
na

ri
os

,
ex

pe
rt

-b
as

ed
 a

na
ly

-
si

s…

W
el

l e
xp

la
in

ed
:

St
ep

s,
 g

ui
de

lin
es

…

A
pp

lie
d

on
 a

n
in

te
lli

ge
nt

 tr
af

fi
c

sy
st

em
s

P
L

-

W
ijn

st
ra

’s
 a

pp
ro

ac
h

[2
0]

A

ss
es

s
a

PL
 f

or
 th

e
w

ay
 it

 d
ea

ls
 w

ith

va
ri

at
io

n

P
L

 q
ua

lit
ie

s:
 V

ar
ia

bi
l-

ity

E
vo

lu
tio

n
re

la
te

d
P

L
A

ev

al
ua

ti
on

St

ud
y

th
e

ga
th

er
ed

in

fo
rm

at
io

n
A

n
ov

er
vi

ew

C
as

e
st

ud
y

in
 th

e
m

ed
ic

al
 d

om
ai

n
-

S
A

C
A

M
 (

So
ft

w
ar

e
A

rc
hi

te
ct

ur
e

C
om

pa
ri

-
so

n
A

na
ly

si
s

M
et

ho
d)

[2

2]

C
om

pa
re

 c
an

di
da

te

ar
ch

ite
ct

ur
es

 (
ex

is
t-

in
g

pr
od

uc
t a

rc
hi

te
c-

tu
re

s)

P
L

 q
ua

lit
ie

s
D

om
ai

n
qu

al
it

ie
s

E
xi

st
in

g
pr

od
uc

t
ar

ch
ite

ct
ur

e
ev

al
ua

ti
on

Sc

en
ar

io
s,

 ta
ct

ic
s

an
d

m
et

ri
cs

D

et
ai

le
d

ex
pl

an
at

io
n:

St

ep
s,

 g
ui

de
lin

es
,

pa
rt

ic
ip

an
ts

…

A
n

ex
am

pl
e

to

ill
us

tr
at

e
th

e
m

et
ho

d
-

K
or

ho
ne

n’
s

ap
pr

oa
ch

[2

3]

A
ss

es
s

sy
st

em

ad
ap

ta
bi

lit
y

to
 a

pr

od
uc

t f
am

ily

P
L

 q
ua

lit
ie

s:
 A

da
pt

a-
bi

lit
y,

 c
on

fi
gu

ra
bi

lit
y…

D

om
ai

n
qu

al
it

ie
s:

R

el
ia

bi
lit

y,
 p

er
fo

rm
-

an
ce

…

E
xi

st
in

g
pr

od
uc

t
ar

ch
ite

ct
ur

e
ev

al
ua

ti
on

Sc

en
ar

io
s

E
xp

la
in

ed
 w

it
h

a
ca

se
 s

tu
dy

A

pp
lie

d
on

 a
 c

as
e

st
ud

y
of

 m
ob

ile

m
ac

hi
ne

s

L
oo

se
ly

 b
as

ed

on
 S

A
A

M
 a

nd

A
T

A
M

T
P

A
 (

T
im

in
g

Pr
op

er
ty

A

ss
es

sm
en

t)
 [

11
]

A
na

ly
se

 th
e

ti
m

in
g

pr
op

er
ti

es
 o

f
ne

w

pr
od

uc
ts

 o
f

a
lin

e

In
st

an
ti

at
ed

 q
ua

lit
ie

s:

T
im

in
g

pr
op

er
tie

s
P

A
 e

va
lu

at
io

n
R

M
A

G

en
er

al
 d

es
cr

ip
tio

n
A

 s
m

al
l e

xa
m

pl
e

to

ill
us

tr
at

e
th

e
m

et
ho

d
-

Z
ha

ng
 e

t a
l’

s
ap

pr
oa

ch

[1
3]

[3
4]

E

va
lu

at
e

di
ff

er
en

t
ar

ch
ite

ct
ur

al
 o

pt
io

ns

of
 a

 P
L

A

In
st

an
ti

at
ed

 q
ua

lit
ie

s:

Sc
al

ab
ili

ty
, P

er
fo

rm
-

an
ce

, s
ec

ur
it

y…

E
va

lu
at

io
n

du
ri

ng

de
ri

va
tio

n
B

B
N

 (
B

ay
es

ia
n

B
el

ie
f

ne
tw

or
k)

E

xp
la

in
ed

 w
it

h
ex

am
pl

es

2
ex

am
pl

es
 to

ill

us
tr

at
e

th
e

m
et

ho
d

-

Se
rv

ic
e

U
ti

liz
at

io
n

m
et

ri
cs

 [
9]

A

ss
es

s
an

d
im

pr
ov

e
P

L
A

s
P

L
 q

ua
lit

ie
s:

St

ru
ct

ur
al

 s
ou

nd
ne

ss

P
L

A
 e

va
lu

at
io

n,

E
vo

lu
tio

n
re

la
te

d
P

L
A

ev

al
ua

ti
on

, E
va

lu
at

io
n

du
ri

ng
 d

er
iv

at
io

n

M
et

ri
cs

C

om
pr

eh
en

si
ve

ly

ex
pl

ai
ne

d
C

as
e

st
ud

y
in

 a

di
gi

ta
l l

ib
ra

ry
 P

L
A

-

R
ah

m
an

’s
 m

et
ri

cs
 [

10
]

M
ea

su
re

 th
e

qu
al

ity

at
tr

ib
ut

es
 o

f
a

P
L

A

P
L

 q
ua

lit
ie

s:
 R

eu
sa

bi
l-

ity
, m

od
ul

ar
it

y
P

L
A

 e
va

lu
at

io
n,

E

vo
lu

tio
n

re
la

te
d

P
L

A

ev
al

ua
ti

on
, E

va
lu

at
io

n
du

ri
ng

 d
er

iv
at

io
n

M
et

ri
cs

R

ea
so

na
bl

e
C

as
e

st
ud

y
in

 a

lib
ra

ry
 s

ys
te

m

In
cl

ud
e

Se
rv

ic
e

U
ti

liz
at

io
n

m
et

ri
cs

 1

 Product-Line Architecture: New Issues for Evaluation 183

There are also architecture recovery or mining methods that include an architecture
evaluation phase to analyse if the architecture can be the basis for a product-line:
Pinzger et al’s recovery method [35] which has an step to analyse and compare recov-
ered architectures and MAP (Mining Architectures for Product lines) [36] that mines
and evaluates product architectures.

Related to product-line architecture evaluation, Bass et al [37] compare the cost of
variability decisions during architectural design. The cost is also a quality attribute but
related to business attributes that are not explicitly discussed in this paper.

7 Conclusions

At product-line architecture level, evaluation becomes more important than in single
systems because an error in the PLA can be spread into a lot of products. However,
the evaluation is more difficult because the level of abstraction is higher.

Software product-line architecture evaluation is an emerging field where a more
comprehensive investigation is necessary. This framework is an initial classification
of product-line requirements, evaluation times, evaluation techniques and evaluation
methods but it is open to new contributions. The classification of methods can be used
to select the most appropriate method for each case depending on the quality attrib-
utes and the selected evaluation moment.

Among the surveyed methods, most of them focus on evaluating product-line qual-
ity attributes (flexibility) at product-line architecture level. While there are few meth-
ods to assess concrete architectures derived from the PLA that reuse assets. However,
there are (no product-line specific) single-system architecture evaluation methods
than can be used for derived product architectures and also for PLAs. Single-product
architecture evaluation is quite a mature field where a lot of research, techniques and
methods have been developed. This allows the possibility to adapt the methods and
techniques used in single product architecture into product-line context.

Acknowledgement

This work was partially supported by The Basque Government, department of educa-
tion, universities and research. Leire Etxeberria enjoys a doctoral grant of the re-
searchers formation program.

References

1. Dolan, T.J.: Architecture Assessment of Information-Systems Families, Ph.D. Thesis, De-
partment of Technology Management, Eindhoven University of Technology (2002)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, Addison Wesley
(1998)

3. Bosch, J.: Design And Use of Software Architectures: Adopting and evolving a product-line
approach, Addison-Wesley ACM Press (2000)

4. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns, Addison
Wesley (2002)

184 L. Etxeberria and G. Sagardui

5. Thiel, S., Hein, A.: Systematic Integration of Variability into Product Line Architecture
Design, Chastek, G.J.(Ed.): Software Product Lines, Second International Conference,
SPLC 2, Proceedings, LNCS 2379 Springer (2002) 130-153

6. Deelstra, S., Sinnema, M., Bosch, J.: Experiences in Software Product Families: Problems
and Issues During Product Derivation, In Nord, R.L.(ed): Software Product lines, Third In-
ternational Conference, SPLC 3, Proceedings, LNCS 3154 Springer (2004) 165-182

7. Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L., Zaremski, A.: Recommended
Best Industrial Practice for Software Architecture Evaluation, Technical Report, CMU/SEI-
96-TR-025 (1997)

8. Graaf, B., Van Kijk, H., Van Deursen, A.: Evaluating an Embedded Software Reference
Architecture –Industrial Experience Report, 9th European Conference on Software Mainte-
nance and Reengineering (CSMR 2005), Proceedings. IEEE Computer Society (2005) 354-
363

9. Van der Hoek, A., Dincel, E., Medvidovic, N.: Using Service Utilization Metrics to Assess
and Improve Product Line Architectures, USC-CSE-2001-507 (2001)

10. Rahman, A.: Metrics for the Structural Assessment of Product Line Architecture, Master
Thesis Software Engineering, Thesis nº: MSE-2004:24 (2004)

11. Alonso, A., García-Valls, M., de la Puente, J.A.: Assessment of Timing Properties of Fam-
ily Products, Van der Linden, F.(Ed.): Development and Evolution of Software Architec-
tures for Product Families, Second International ESPRIT ARES Workshop, Proceedings.
LNCS 1429 Springer (1998) 161-169

12. Auerswald, M., Herrmann, M., Kowalewski, S., Schulte-Coerne, V.: Reliability-Oriented
Product Line Engineering of Embedded Systems, Van der Linden, F.(Ed.): Software Prod-
uct-Family Engineering, 4th International Workshop, PFE 2001, Revised Papers. LNCS
2290 Springer (2002) 83-100

13. Zhang, H., Jarzabek, S., Yang, B.: Quality Prediction and Assessment for Product Lines,
Eder, J., Missikoff, M.(Eds.): Advanced Information Systems Engineering, 15th Interna-
tional Conference, CAiSE 2003, Proceedings. LNCS 2681 Springer (2003) 681-695

14. De Lange, F., Kang, J.: Architecture True Prototyping of Product Lines, In van Linden,
F.(ed): Software Product-Family Engineering, 5th International Workshop, PFE 5, Revised
Papers LNCS 3014 Springer (2004) 445-453

15. Gannod, G.C., Lutz, R.R.: An Approach to Architectural Analysis of Product Lines, ICSE,
Proceedings of the 22nd International Conference on Software Engineering, ACM (2000)
548-557

16. Matinlassi, M., Niemelä, E., Dobrica, L.: Quality-driven architecture design and quality
analysis method: A revolutionary initiation approach to a product line architecture, VTT
Publications (2002)

17. Maccari, A.: Experineces in assessing product family software architecture for evolution,
Proceedings of the 22rd International Conference on Software Engineering, ICSE 2002.
ACM (2002) 585-592

18. Riva, C., Del Rosso, C.: Experiences with Software Product Family Evolution, 6th Interna-
tional Workshop on Principles of Software Evolution (IWPSE 2003), IEEE Computer So-
ciety (2003) 161-169

19. America, P., Hammer, D., Ionita, M.T., Obbink, H., Rommes, E.: Scenario-Based Decision
Making for Architectural Variability in Product Families, In Nord, R.L.(ed): Software
Product lines, Third International Conference, SPLC 3, Proceedings, LNCS 3154 Springer
(2004) 284-303

20. Wijnstra, J.G.: Evolving a Product Family in a Changing Context, In van Linden, F.(ed):
Software Product-Family Engineering, 5th International Workshop, PFE 5, Revised Papers
LNCS 3014 Springer (2004) 111-128

 Product-Line Architecture: New Issues for Evaluation 185

21. Deelstra, S., Nijhuis, J., Bosch, J., Sinnema, M.: The COVAMOF Software Variability
Assessment Method (COSVAM), 2nd Groningen Workshop on Software Variability Man-
agement (2004)

22. Stoermer, C., Bachmann, F., Verhoef, C.: SACAM: The Software Architecture Comparison
Analysis Method, Technical Report, CMU/SEI-2003-TR-006 (2003)

23. Korhonen, M., Mikkonen, T.: Assessing Systems Adaptability to a Product Family, In Al-
Ani, B., Arabnia, H.R., Mun, Y.(Eds.): Proceedings of the International Conference on
Software Engineering Research and Practice, SERP '03, Volume 1. CSREA Press (2003)
135-141

24. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and
Case Studies, Addison Wesley (2001)

25. Ferber, S., Heidl, P., Lutz, P.: Reviewing Product Line Architectures: Experience report of
ATAM in an Automotive Context, Van der Linden, F.(Ed.): Software Product-Family En-
gineering, 4th International Workshop, PFE 2001, Revised Papers. LNCS 2290 Springer
(2002) 364-382

26. Gallagher, B.P.: Using the Architecture Tradeoff Analysis Method to Evaluate a Reference
Architecture: A Case Study, CMU/SEI Technical note (2000)

27. Van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., Obbink, H.: Software Product
Family Evaluation, In Nord, R.L.(ed): Software Product lines, Third International Confer-
ence, SPLC 3, Proceedings, LNCS 3154 Springer (2004) 110-129

28. Niemelä, E., Matinlassi, M., Taulavuori, A.: Practical Evaluation of Software Product
Family Architectures, In Nord, R.L.(ed): Software Product lines, Third International Con-
ference, SPLC 3, Proceedings, LNCS 3154 Springer (2004) 130-145

29. Thiel, S.: On the definition of a Framework for an Architecting Process Supporting Product
Family Development, Van der Linden, F.(Ed.): Software Product-Family Engineering, 4th
International Workshop, PFE 2001, Revised Papers, LNCS 2290 Springer (2002) 125-142

30. Bayer, J., Flege, O., Gacek, C.: Creating Product Line Architectures, Van der Linden,
F.(Ed.): Software Architectures for Product Families, International Workshop IW-SAPF-3,
Proceedings, LNCS 1951 Springer (2000) 210-216

31. Dobrica, L., Niemelä, E.: A strategy for analysing product line architectures, VTT Publica-
tions (2000)

32. Ionita, M.T., America, P., Hammer, D.: A Method for Strategic Scenario-Based Archi-
tecting, Proceedings of the Hawai International Conference on System Sciences (HICSS-
38), IEEE Computer Society (2005)

33. Svahnberg, M., Wohlin, C., Lundberg, L., Mattson, M.: A Quality-driven Decision Support
Method for Identifying Software Architecture Candidates. International Journal of Software
Engineering and Knowledge Engineering, Vol. 13, No.5 (2003)

34. Zhang, H., Jarzabek, S.: A Bayesian Network Approach To Rational Architectural Design,
Accepted by IJSEKE (2005)

35. Pinzger, M., Gall, H., Girard, J.F., Knodel, J., Riva, C., Pasman, W., Broerse, C., Wijnstra,
J.G.: Architecture Recovery for Product Families, In van Linden, F.(ed): Software Product-
Family Engineering, 5th International Workshop, PFE 5, Revised Papers LNCS 3014
Springer (2004) 332-351

36. Stoermer, C., O’Brien, L.: MAP – Mining Architectures for Product Line Evalutions,
Working IEEE / IFIP Conference on Software Architecture (WICSA 2001), IEEE Com-
puter Society (2001) 35-44

37. Bass, L., Bachmann, F., Klein, M.: Making Variability Decisions during Architecture De-
sign, In van Linden, F.(ed): Software Product-Family Engineering, 5th International Work-
shop, PFE 5, Revised Papers LNCS 3014 Springer (2004) 454-465

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 186 – 197, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Strategies of Product Family Architecture Development

Eila Niemelä

VTT Technical Research Centre of Finland, Oulu, Finland
Eila.Niemela@vtt.fi

Abstract. Product family engineering (PFE) is successfully applied in different
kinds of software intensive systems. As there are several ways to apply PFE,
selecting an appropriate approach is a complex task. This paper introduces six
ways to set the goal of PFE and eight strategies to achieve the goal. It also
introduces steps how to evaluate which strategy provides the best fit for a
company. The criteria for selecting a strategy have been derived from seventeen
case studies, including nineteen product families, in the various contexts
provided by small, medium size and large companies.

1 Introduction

The core idea in software PFE is to use as much as possible the same software assets
in all family members. PFE is successfully applied in software intensive systems,
especially in the development of embedded systems but also in pure software systems.
The main reason in applying PFE is to get competitive advantage by shortening
development time, decreasing development and maintenance costs and expanding
markets and market share. The application of PFE enables even to deploy new
products in few days or few weeks [1] achieving a reuse level from 70% up to 100%.

Several attempts have been made to explain what the preconditions are for a
successful adoption of PFE. The context of product family adoption has been
explored from the points of view of market, organization, and personnel [2]. The
economics of PFE have also been considered [3], as well as the development and
evolution of product family architectures (PFA) [4, 5]. Furthermore, a software family
evaluation framework (FEF) has been introduced with four dimensions related to
software engineering concerns: business, architecture, process and organization [6].
FEF is designed to be used for the benchmarking and assessment of product families.
Therefore, a specific method for family architecture evaluation (FAE) was developed
[7]. The method uses the architecture dimension of FEF for representing the maturity
levels of PFAs. However, there is no method or guidance available on how to select
an appropriate way of applying product family engineering.

The contribution of this paper is a Strategy Evaluation Framework (SEF) that
provides a map of alternative PFAs and a method to select an appropriate PFE
strategy. The focus is on the different ways of realizing family architectures and PFE
strategies used in different business contexts. The SEF has been derived by analysing
the data collected from twelve case studies documented in the literature and five cases
studied by semi-structured interviews. Collected data was analysed and finally, a set
of business aspects, important while making a decision which kind of PFA to apply,

 Strategies of Product Family Architecture Development 187

were identified. The results are presented as an evaluation framework intended to be
used for selecting a PFE strategy.

The structure of this paper is as follows. Section 2 presents how the study was
carried out. Section 3 introduces the strategy evaluation framework. Section 4
compares the applied PFAs from the business points of view. Section 5 compares the
findings to the related work. Concluding remarks close the paper.

2 Description of the study

Data for the analysis was collected in three phases. First, technical managers and
architects of three small and medium size companies were interviewed in a semi-
structural way. Architectural artefacts were also reviewed in two cases. As a result the
FAE method was created [7]. Second, twelve case studies were collected from the
literature. The analysis was based on the same comparison framework as used in the
interviews. Third, two additional interviews were carried out in the semi-structured
way in order to acquire new and fresh experiences from enterprise companies. In all
phases, the FAE method and its comparison framework were used as tools for
collecting and organizing textual data.

In summary, the collected data covered a wide variety of product families. Two of
the 17 cases included more than one product family. Five interviewed companies with
six product families targeted at embedded systems or embedded software. Eleven
companies with 13 product families reported in literature developed embedded
systems and devices. Five companies provided six pure software families. Three of
them were, however, related to large embedded systems and were used only with
them. Eight of the product families were applied in small or medium size (SME)
companies. Eleven product families were applied in six large enterprises in different
application fields or/and domains. The types of products varied from distributed
information systems to command and control systems, from hardware related and
digital signal processing software to user interface software and from large integrated
products including mechanics, electronics and software to business supporting tools.

The maturity levels of FEF [6] and the architecture evolution framework [8] were
used as a starting point for classifying the ways of defining PFAs, and each case was
compared to them. The comparison resulted in the target PFAs defined in the next
section.

Finally, a method for selecting a PFE strategy was defined based on the analysis
results of the case studies. The aim was to find out the reasons why a company had
decided to apply a particular PFA, how they realized PFA and why their selection had
worked successfully, i.e. what were the critical factors for successful PFE adoption.
Grounded Theory was applied to analyzing the cases [9]. The idea of Grounded
Theory is to read and reread the collected data, and iteratively distil a set of concepts
and their interrelationships. Thus, the SEF was created based on the critical enabling
factors of PFE identified in the case studies. The author’s earlier studies, e.g. [7, 10],
and experiences with product families have certainly influenced on interpretation of
the results.

188 E. Niemelä

3 Strategy Evaluation Framework

This section presents the PFAs identified in the case studies and the method designed
for selecting an appropriate PFE strategy. PFA has a key role in the selection process
because it is the core asset of PFE.

3.1 Alternative PFAs

The identified ways of implementing PFAs (Fig. 1) are presented as a combination of
the maturity levels of FEF [6] [11] and the architecture evolution framework [8]. The
arrows indicate possible transitions from one PFA to another. Different PFAs can also
be applied concurrently.

FEF defines five maturity levels. The first level includes independent products that
do not share any artefacts, i.e. requirements, features, architecture or components.
Thus, this level is not considered as a PFE approach.

On the second level (standardized infrastructure in FEF), only external components
are specified and used. This level is extended by a commonly used way of software
reuse; new products are developed based on the earlier releases by using the cut, paste
and change technique. In most cases, software is component based but not reusable as
such, and software architecture is not defined or used as an asset. In [8], it has been
suggested that consecutive releases use a stable architecture. Quite the contrary, it was
found out that on this level architecture was not defined or used intentionally but
rather components or pieces of software were reused by tailoring them for new
products. Thus, this kind of reuse cannot be considered as PFE either.

On the third level (software platform in FEF), three different ways to apply PFE
were identified; packaged services, internal platforms and platform products. FEF
defines an internal platform including common features of all family members and a
set of reusable components that realize the features. We also identified an approach,
in which a company provided a platform product that was sold to customers as such
or as part of a larger system. A similar finding is introduced in [8]. In addition, we
identified a new approach, packaged services. This approach of family engineering
was applied together with an internal platform or a platform product. Packaged
services include additional products that are used during installation, configuration,
training and maintenance. These service packages are also differentiated for several
types of users; developers, customers and maintainers in a provider organization,
customer organization and/or third parties. The approach ‘platform customer’
introduced in [8] corresponds to the use of Modified-Off-The-Shelf (MOTS)
components in our model [12], and therefore it is not considered as a PFE approach.

On the fourth level (software product family in FEF), the family architecture and
variation points are fully specified and managed. The PFA is the key artefact that
enables systematic product derivation from a defined PFA. Two different ways used
either together or separately were identified. PFAs were used as defining and
managing variations when the amount of variation was reasonable or when variations
were defined in two levels of degree; high-level variation was dealt with in
architecture and low-level (fine-grain) variations as configurable features and/or

 Strategies of Product Family Architecture Development 189

components. A configurable features/components base without explicitly defined
architecture was also used. In that case, architecture was integrated into the platform
and the common component base.

On the fifth level in FEF, the product family architecture is enforced and product
members are automatically generated. This level was identified only in two cases,
which is why it can be assumed that this approach is suitable only for highly mature
and stable product families. In summary, the most applicable PFE approaches seem to
be

• Product family architecture,
• Configurable features or/and components base,
• Internal platform,
• Platform product, and
• Packaged services.

It appears beneficial to apply these approaches together, i.e. to make simultaneous
use of, e.g., an internal platform, PFA, a configurable components base and packaged
services.

Product
FamilyArchitecture

Internal Platform

Configurable
Product Family

Base

Standardized
Infrastructure

Independent
Products

Platform Product
Packaged
Services

Consecutive
Releases from
Components

Configurable
Features/

Components Base

Level 1

Level 2

Level 3

Level 4

Level 5

Fig. 1. Alternative ways to implement PFAs

190 E. Niemelä

3.2 Selecting a PFE Strategy

When determining which PFE approach to use, a company has to evaluate the quality
of their products and what kind of reuse potential the products embody. This decision
making process is divided into three phases. First, the assumptions for achieving
benefits from PFE are evaluated. Second, the desired target PFA is defined, and last,
the most appropriate PFE strategy is selected based on reasoning and estimations.

3.2.1 Estimate Benefits
In order to get added value from PFE, a company has to analyze what kind of benefits
it can achieve from PFE adoption, i.e. what issues are important for the business of a
company and its customers. The basic assumptions for successful PFE adoption are:

• Future customer needs are known or can be predicted. (Criterion: predictability)
• Short delivery times provide competitive advantage, for example, by extending

market share or entering new emerging markets. (Criterion: cutting edge)
• Product costs have remarkable dependence on software development and

maintenance. (Criterion: profitability)
• Products can be used in various ways, e.g. they are used as such and/or with other

products. (Criterion: variability)
• High quality of products is essential in achieving customer satisfaction. (Criterion:

customer satisfaction)

These assumptions can be used as the first evaluation criteria whether or not to
apply PFE. If these assumptions are not valid, there is a risk that the benefits of
applying PFE will not be achieved.

3.2.2 Set the Target PFA
The target PFA is defined through three steps:

• Step 1. Evaluate what is the status quo of the architecture of existing products by
using the FAE method [7]. Key product(s) and key competence are evaluated
against the quality criteria of most importance regarding company products and
personnel know-how. Quality criteria of products are depending on the domain(s),
used technologies and customers’ needs. Quality of know-how is related to the
importance of product qualities. The goal is to identify the strengths and
weaknesses of a company in the context of PFE.

• Step 2. Identify the success factors and their importance (Table 1). The goal is to
identify the main business factors why PFA is needed.

• Step 3. Estimate ROI (return on investment) for the different ways of
implementing PFA considering their investment and potential. The estimation is
made based on the economic models such as introduced in [3, 13].

3.2.3 Select the PFE Strategy
The PFE strategy that provides the best fit to the company’s business strategy is
selected using the criteria set for each strategy (Table 2). This analysis phase requires
quantitative and qualitative measurements as an input for each criterion, e.g., the
amount of variation points, personnel competence, and customer satisfaction. How
these measurements are done falls beyond the scope of this paper. However, the

 Strategies of Product Family Architecture Development 191

comparative analysis presented in the next section introduce the aspects identified
important in case studies as selecting a PFA strategy, and thus, they can be used as a
guidance what aspects to look at.

Table 1. Success factors in PFA development

Success factor Criteria PFA alternative
Managing customer
needs

Customer satisfaction
Time-to-market

Configurable features/components base,
configurable product family base

Key competence Cutting edge Internal platform, configurable
features/components base

New opportunities Cutting edge Platform product, packaged services
Effective work
organisation

Cost effectiveness PFA

Evolution
management

Cost effectiveness PFA and configurable
features/components base

4 Comparison of PFE Approaches

This section discusses how PFE adoption is influenced by business. The business
aspects that seemed to have the greatest influence on PFE strategy selection, e.g.
business fields, size and type of family members, etc. are discussed introducing their
impact on the criteria used in setting the target PFA. The purpose of this analysis is to
help while selecting an appropriate PFE strategy.

4.1 Business Fields

PFE provides the greatest advantage in the business fields where product families are
complex from the technology, management and business points of view. In the case
studies, 70% had to do with complex networked embedded systems, and three product
families were pure software families. Thus, it can be concluded that PFE is
appropriate when the complexity of software is high and long-term investments in
PFE are likely to provide added value by improving the efficiency of product
development and enhancing product quality.

Most of the companies applied the newest hardware and software technologies.
The oldest product families (over 10 years) were mainly integrated systems using
newest communication technologies and business expertise as drivers for entering
emerging new markets. Shortening delivery times and decreasing costs were the
advantages these companies were targeting at. Three main trends could be identified
in the adoption of PFE. Firstly, PFE adoption for pure software families has just
started and will expand in the future. Secondly, PFE is applied both to mass-market
products and customized products. Thirdly, the use of platform products provided by
a separated department or a 3rd party is increasing. These platforms used generic IT
technologies for the integration of networked systems. This can also be regarded as a
means of entering new markets by changing business role from a system supplier to a
service supplier.

192 E. Niemelä
T

ab
le

 2
.P

F
E

st
ra

te
gi

es

St
ra

te
gy

M

ea
ns

C
ri

te
ri

a
A

dv
an

ta
ge

s
D

is
ad

va
nt

ag
es

M
in

im
iz

in
g

ri
sk

s
in

te
rn

al
pl

at
fo

rm
id

en
ti
fi

ed
co

m
m

on
al

it
ie

s,
hi

gh
te

ch
no

lo
gi

ca
lc

om
pe

te
nc

e,
th

e
si

ze
of

pr
od

uc
tf

am
il
y

se
pa

ra
ti
on

of
co

m
m

on
al

it
y

an
d

va
ri

ab
il
ity

su
bs

ti
tu

ta
bl

e
ge

ne
ri

c
IT

te
ch

no
lo

gi
es

E
xt

en
di

ng
m

ar
ke

ts
ha

re
pl

at
fo

rm
pr

od
uc

t
hi

gh
te

ch
no

lo
gi

ca
lc

om
pe

te
nc

e,
op

en
ne

ss
,m

ar
ke

ts
ha

re
,

or
ga

ni
za

ti
on

m
od

el

co
m

m
on

al
it
ie

s
se

pa
ra

te
d;

re
sp

on
si

bi
li
ti
es

de
fi

ne
d;

st
ab

il
it
y

of
so

ft
w

ar
e

ig
no

ri
ng

ve
rt

ic
al

ap
pl

ic
at

io
ns

,e
m

er
gi

ng
m

ar
ke

ts
an

d
fa

m
il
y

ev
ol

ut
io

n
M

ax
im

iz
in

g
en

d-
us

er
sa

ti
sf

ac
ti
on

pa
ck

ag
ed

se
rv

ic
es

fa
m

il
ia

ri
ty

w
ith

en
d-

us
er

ne
ed

s
m

ar
ke

ts
eg

m
en

ta
ti
on

;d
et

er
m

in
at

io
n

of
re

sp
on

si
bi

li
ti
es

;d
if

fe
re

nt
pr

ic
in

g;
im

pr
ov

ed
cu

st
om

er
sa

ti
sf

ac
ti
on

on
ly

su
pp

le
m

en
t

bu
si

ne
ss

;a
dd

-o
ns

to
th

e
ke

y
pr

od
uc

ts
B

al
an

ci
ng

co
st

an
d

cu
st

om
er

sa
ti
sf

ac
ti
on

in
te

rn
al

pl
at

fo
rm

+
co

nf
ig

ur
ab

le
fe

at
ur

es
/c

om
po

ne
nt

s
ba

se

se
pa

ra
tio

n
of

co
m

m
on

al
it
ie

s
an

d
va

ri
ab

il
it
ie

s,
th

e
am

ou
nt

of
cu

st
om

iz
at

io
n,

qu
al

it
y

of
pr

od
uc

ts

or
ga

ni
sa

ti
on

ba
se

d
on

se
pa

ra
te

ly
m

an
ag

ed
co

m
m

on
al

it
ie

s
an

d
va

ri
ab

il
it
ie

s;
ke

y
co

m
pe

te
nc

es
ad

dr
es

se
d

in
te

ch
no

lo
gy

an
d

do
m

ai
n

kn
ow

le
dg

e

in
cr

ea
se

d
ef

fo
rt

fo
r

ev
ol

ut
io

n
an

d
kn

ow
le

dg
e

m
an

ag
em

en
t

M
ax

im
iz

in
g

cu
st

om
er

sa
ti
sf

ac
ti
on

co
nf

ig
ur

ab
le

pr
od

uc
t

fa
m

il
y

ba
se

qu
al

it
y

of
pr

od
uc

ts
,s

ho
rt

de
li
ve

ry
ti
m

es
st

an
da

rd
qu

al
it
y;

ch
ea

p
de

li
ve

ry
an

d
de

pl
oy

m
en

t;
pr

ic
in

g
ba

se
d

on
qu

al
it
y

an
d

cu
st

om
er

sa
ti
sf

ac
ti
on

ex
pe

ns
iv

e
to

es
ta

bl
is

h
an

d
m

ai
nt

ai
n;

lo
ng

te
rm

in
ve

st
m

en
t

B
al

an
ci

ng
co

st
an

d
po

te
nt

ia
l

P
F
A

co
m

pl
ex

it
y

an
d

va
ri

ab
il
it
y,

m
ar

ke
ts

ha
re

,n
ew

m
ar

ke
ts

an
ex

te
ns

ib
le

fa
m

il
y

w
it
h

m
ai

nt
ai

na
bl

e
pr

od
uc

tv
ar

ia
nt

s,
cu

st
om

er
ne

ed
s

re
pr

es
en

te
d

an
d

m
an

ag
ed

,k
ey

co
m

pe
te

nc
e

ar
ea

s
ad

dr
es

se
d,

en
te

ri
ng

to
em

er
gi

ng
m

ar
ke

ts
po

ss
ib

le

ke
y

pr
od

uc
t(

s)
an

d
hi

gh
-l

ev
el

kn
ow

le
dg

e
in

sp
ec

if
ic

te
ch

no
lo

gy
an

d
do

m
ai

n
ar

ea
s

re
qu

ir
ed

,
lo

ng
-t

er
m

in
ve

st
m

en
t

B
al

an
ci

ng
co

st
,c

us
to

m
er

sa
ti
sf

ac
ti
on

an
d

po
te

nt
ia

l

P
F
A

+
co

nf
ig

ur
ab

le
fe

at
ur

es
/c

om
po

ne
nt

s
ba

se
co

m
pl

ex
it
y,

va
ri

ab
il
it
y,

de
liv

er
y

ti
m

es
,m

ar
ke

ts
ha

re
,e

m
er

gi
ng

ne
w

m
ar

ke
ts

im
pr

ov
ed

cu
st

om
er

sa
ti
sf

ac
ti
on

by
fl

ex
ib

il
it
y,

sh
or

te
ne

d
de

li
ve

ry
ti
m

es
,n

ew
em

er
gi

ng
m

ar
ke

ts

ti
m

e
an

d
co

st
co

ns
um

in
g

to
es

ta
bl

is
h;

lo
ng

-t
er

m
in

ve
st

m
en

t

M
ax

im
iz

in
g

po
te

nt
ia

l
P
F
A

+
co

nf
ig

ur
ab

le
fe

at
ur

es
/c

om
po

ne
nt

s
ba

se
+

pl
at

fo
rm

pr
od

uc
t

+
pa

ck
ag

ed
se

rv
ic

es

co
m

pl
ex

it
y,

va
ri

ab
il

ity
,c

os
t

ef
fe

ct
iv

en
es

s,
de

li
ve

ry
ti

m
es

,
cu

st
om

er
sa

ti
sf

ac
ti
on

,m
ar

ke
t

sh
ar

e,
em

er
gi

ng
ne

w
m

ar
ke

ts

se
pa

ra
ti
on

of
co

nc
er

ns
:b

us
in

es
s

by
P
F
A

,
cu

st
om

er
sa

ti
sf

ac
ti
on

by
co

nf
ig

ur
at

io
n

an
d

pa
ck

ag
ed

se
rv

ic
es

,a
nd

te
ch

no
lo

gy
by

a
pl

at
fo

rm
pr

od
uc

t

ex
pe

ns
iv

e
to

es
ta

bl
is

h
an

d
m

ai
nt

ai
n,

lo
ng

te
rm

in
ve

st
m

en
t,

‘o
nl

y
fo

r
le

ad
er

s’

 Strategies of Product Family Architecture Development 193

The number of critical systems, such as power generation systems and medical
systems, was high, especially in product families initiated a long time ago. Products
embodying high quality requirements but not regarded as critical systems, e.g.
telecommunication switching systems and different kinds of measuring systems,
constituted the other main application field. Although the systems quality
requirements were not explicitly defined in all cases, overall correctness and
performance were the default requirements for all product families. Surprisingly
enough, security did not appear to play too important a role in the product families.
Most of the application fields were based on technology push. Application pull was
visible only in banking service systems, embedded information systems, application-
oriented integration platforms and special environments for business support services.

4.2 Size and Type of Product Family

A PFE approach can be applied to product families of different sizes. PFA initiation
was typically based on one or a few key products that had been successful in terms of
markets, quality and technology know-how. Over 90% of the cases applied an
evolutionary PFE approach, starting small and extending the product family when
deemed necessary, or gaining advantage by a transition, e.g., from the ‘internal
platform’ approach to the ‘configurable features and components base’ approach.
However, there was an exception, in which a configurable components base was
established from scratch, applying the revolutionary PFE approach. Instead of the
‘minimizing risk’ strategy that was normally applied, a ‘maximizing potential’
strategy was used in that case. For using this approach, there were a number of
preconditions that obviously had to be met. Firstly, application knowledge must have
been tremendously high as most configuration parameters originate from the
application field. Secondly, judging by the fact that separation of concerns was also
used for configuration, it may be concluded that software and configuration
techniques were well-known. Thirdly, the products included mainly in-house software
– it is impossible or very difficult to adapt commercial software to variants. Lastly,
the development organization has to be located at a single site.

Market segments were used as a starting point for scoping a product family (PF).
Complementary products sold as integrated systems could also establish a product
family. One observation was that product families established during the last 4-5
years seemed to be more market and business oriented than those established 10 years
ago. This indicates that business orientation will impact more on PFE adoption in the
future.

4.3 Maturity of PFA

The maturity of product families varied from 15 years to a couple of years. Most of
the interviewed companies had renewed their product families during the last five
years (originally established about 10 years ago). Thus, domain knowledge was
stable, while technology knowledge required updating, i.e. in technology push mode
affected the need for PFA recovery. In another case, a company owning a ten-year
product family had identified a need for modernization in their software
implementation technology, and since hardware and software dependencies were

194 E. Niemelä

managed, the software technology platform could easily be tailored for new hardware.
Thus, hardware did not directly push towards technology transfer. In summary, PFA
can be considered to reach its optimum maturity at the age of 5-7 years. In order to
benefit from PFA, it should be kept relatively stable for at least five years.

4.4 Importance of Software in Products

PFE is effective in software intensive systems. In the studied cases, the share of
software could be calculated or estimated on the basis of the software development
cost, which typically varied from 50 % to 80% of the total development costs. Of the
total costs, the software costs were estimated lower (around 50%).

Maintenance costs turned out to vary according to types of configuration. In
customized products (especially in configurable features and components base),
maintenance was part of business, while only the system provider could configure the
system (i.e. separate maintenance cost). In the case of software keys, customization
was done remotely by a system provider (i.e. low or no maintenance cost). In the third
case, customers did the configuration themselves according to the predefined rules
(i.e. maintenance cost was part of the development cost). In the last case, maintenance
was not managed but if improvements were needed, they were implemented during
the development of a new release (i.e. part of development cost).

Customization was around 30% of the total software. A high customization degree
turned out to push companies towards focusing on both PFA and configurable
features/components base and investing 30% of their development cost in proprietary
variability management tools. When fast product derivation and deployment was
required, configuration support was a necessity. Configuration support also made it
possible to outsource deployment work to 3rd parties while keeping control over
product quality.

In-house software was important in PFs; most of the studied product families were
based on proprietary software. However, there was a tendency among the case
companies to transfer from proprietary software to 3rd party software (commercial off the
shelf and open source), while at the same time restricting their use in a way that would
enable the companies to take optimal advantage of the software without losing control
over the product family. Open source software will be a future challenge in PFE.

4.5 Quality Requirements

Among business qualities, time-to-market (i.e. fast product derivation and
deployment) and cost-effective development (i.e. increased reusability, flexibility and
extensibility) were considered important. Standardization and technology push were
deemed important as business drivers, related to qualities such as changeability,
expandability and reliable functioning of applications. Price erosion was a new
business driver, indicating that markets were changing from the technology push
operation mode to the application pull mode. In that new situation, customer
satisfaction plays an important role, product life cycles are shorter and price is
becoming a remarkable competitive expedient.

External product qualities (visible while running a system) are as important as
ever. Performance, reliability, interoperability, safety, availability, scalability and

 Strategies of Product Family Architecture Development 195

usability are still regarded as necessities that have to be provided by a PF. The
importance of execution qualities may be lower if only the existing PFE approaches
are looked at. However, many of the interviewed companies were moving towards
service oriented software engineering, in which execution qualities become more
important.

Internal qualities, i.e. reusability, testability, modifiability, maintainability,
extensibility, are qualities related to the software development and maintenance. They
are mostly of interest to software providers although also indirectly visible to
customers and end-users. While the importance of the internal qualities was obvious,
PFE is now focusing on proactive PFE with increased interest in flexibility and
extensibility instead of modifiability and maintainability. Consequently, future
product families will be even more complex and require sophisticated self-
configuration, self-healing and self-organization mechanisms.

In the case of the embedded systems family, traditional hardware specific qualities,
such as the ability to tolerate low temperature, vibrations and splashes, are still
important in products intended for hard circumstances. Furthermore, low power
consumption is relevant in mobile terminals and measuring systems used for
environmental data collection.

4.6 Variability Management

The amount of variations depends on the number of sources producing differences in
software. Variations were caused by new business manners, market segments,
customer needs, standards, national regulations, diversity of environments, hardware,
software platforms and implementation technologies, and differences in features,
application data and component combinations.

The means of managing variability varied a lot; PFs applied software keys (license
based), commercial options, separation of commonalities and product specific parts,
property files, software configuration management, configuration parameters,
tailoring rules and frameworks. However, there are two main extremes in variability
management. Those product families that had a very long life cycle (20-30 years) and
a long development time (20-30%/life cycle) employed software reuse as such or with
configuration parameters. These companies manage variability in their normal
release-based software development process by modifying and tailoring software just
slightly for each release. The other extreme is represented by feature-based software
configuration, which allows reactive PFE and to some extent proactive PFE. In both
cases, technology changes were made relatively often. In the latter case, users’ needs
were the main reason for making changes to the software and thus feature-based
variability management was applied. Features could be initiated in the development of
a particular product and leveraged afterwards to the whole PF.

In summary, the means of variability management depends mostly on the time-to-
market; i.e. how much time it will take to derive a product from a product family, and
how fast the deployment of a product has to be. Product derivation was reported to
last from a few days to some months. The deployment can take some hours or some
months and still be fast enough. In a release-based product family, one or two new
releases were introduced in a year. Thus, delivery time appears highly dependent on
the business context.

196 E. Niemelä

5 Related Work

There are several evaluation frameworks that define the maturity levels of PFE. Bosch
presented the first version of the maturity levels [14], from which the first two levels
are still visible in Fig. 1, in FEF [6, 11] and in the evolution framework [8]. These two
levels are not considered as PFE approaches in this study but the preceding phases of
PFE.

Bosch defined the third level as ‘platform’. We identified three ways of applying PFA
on the third level; internal platform, platform product and packaged services. Nedstam dn
Karlsson [8] have also identified ‘internal platform’ and their approach ‘platform as
product‘ is quite similar to our definition ‘platform product’. The approach ‘packages
services’ has not identified earlier. Software platform has also defined in FEF.

Level 4 differs the most. First, Bosch defined ‘software product lines’ and ‘product
population’ between levels 3 and 4, and ‘program of product lines’ between levels 4
and 5. Second, in [8] level 4 is defined as ‘software product line’, although they also
identified ‘an unmanaged configurable product base’ being a preceding phase of a
product line. In the first version of FEF [6], level 4 was ‘software product family’,
indicating that this level is the first level that really provides an explicitly defined
family architecture. That is why we have called it ‘product family architecture’. In the
current version of FEF [11], level 4 is defined as ‘product variants’. The different
definitions indicate that all ways of applying PFA on level 4 is not identified yet. For
example, in our study we identified the approach ‘configurable features/components
base’ that could be applied as a separate means of managing product variations, or
concurrently with the PFA.

The maturity level 5 is mainly defined as a configurable product base [6, 8, 14]. In
[11], ‘self-configurable products’ is defined instead of our definition ‘configurable
product family base’ but despite of different wording they have the same meaning.

Thus, there is a lot of related work done for defining maturity and evolution levels
of PFAs and a decision framework based on process and organisation maturity [15],
but any approach for making the selection based on business and architecture
relations could not be found. Thus, the presented SEF is an initial concept, and it
needs to be applied and validated in practice together with earlier developed PFE
metrics, e.g. economic models [16].

6 Conclusions

Product family engineering can be applied in several ways. This paper introduced six
approaches (i.e. internal platform, platform product, packages services, product
family architecture, configurable features/components base, and configurable product
family base) to adopting PFE and eight strategies from which a company can select
the one that provides the desired benefits. In order to make the decision which
strategy to select, a company has to evaluate their current status as regards business,
architecture, process, and organization issues. The benefits achieved by a PFE
approach are the main criteria when considering business issues, such as business
field, size and type of product family, quality and variability management. After
evaluating the current state of the product architectures, success factors are identified

 Strategies of Product Family Architecture Development 197

and their importance is ranked. Next, the benefits are estimated by pinpointing the
identified six ways of implementing PFAs as regards investments and potential.
Finally, the PFE strategy is selected by considering potential benefits, alternative
strategies and the criteria set for the application of these strategies.

References

[1] M. Raatikainen, T. Soininen, T. Männistö, and A. Mattila, "A Case Study of Two
Configurable Software Product Families," presented at the 5th Product Family
Engineering workshop, Siena, Italy, 2003.

[2] S. Buhne, G. Chastek, T. Käkölä, P. Knauber, L. Northrop, and S. Thiel, "Exploring the
Context of Product Line Adoption," presented at the 5th Product Family Engineering
workshop, Sienna, Italy, 2003.

[3] K. Schmid and M. Verlage, "The Economic Impact of Product Line Adoption and
Evolution," IEEE Software, vol. 19, pp. 50-57, 2002.

[4] P. Clements, Northrop, L., Software Product Lines: Practices and Patterns. Boston, MA,
USA: Addison-Wesley, 2002.

[5] J. Bosch, Design and use of software architectures: adopting and evolving a product-line
approach. Harlow: Addison-Wesley, 2000.

[6] F. van der Linden, J. Bosch, E. Kamsties, K. Känsälä, L. Krzanik, and H. Obbink,
"Software Product Family Evaluation," presented at the 5th Product Family Engineering
workshop, Siena, Italy, 2003.

[7] E. Niemelä, M. Matinlassi, and A. Taulavuori, "Practical Evaluation of Software Product
Family Arhitectures," presented at Third International Conference on Software Product
Lines, Boston, USA, 2004.

[8] J. Nedstam and E.-A. Karlsson, "Experiences form Architecture Evolution," presented at
Autralasian Architecture Workshop on Software and System Architectures, Melbourne,
Australia, 2004.

[9] J. Corbin and A. Strauss, Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory: Sage Publications, 1998.

[10] E. Niemelä and T. Ihme, "Product Line Software Engineering of Embedded Systems," ACM
SIGSOFT Software Engineering Notes, vol. 26 (3), pp. 118 - 125, 2001.

[11] F. van der Linden, J. Bosch, E. Kamsties, K. Känsälä, and H. Obbink, "Software Product
Family Evaluation," presented at The Third International Conference on Software Product
Lines, SPLC3, Boscton, USA, 2004.

[12] A. Taulavuori, Niemelä, E., Kallio, P., "Component documentation - a key issue in
software product lines," Information and Software Technology, pp. 535-546, 2004.

[13] K. Schmid, "A Quantitative Model of the Value of Architecture in Product Line Adoption,"
presented at the 5th Product Family Engineering workshop, Sienna, Italy, 2003.

[14] J. Bosch, "Maturity and Evolution in Software Product Lines: Approaches, Artefacts and
Organization," presented at Second International Conference on Software Product Lines,
San Diego, USA, 2002.

[15] J. Bosch, "On the Development of Software Product-Family Components," presented at The
3rd International Conference on Software Product Lines, SPL3, Boston, USA, 2004.

[16] G. Böckle, P. Clements, J. D. McGregor, D. Muthig, and K. Schmid, "A cost model for
software product lines.," presented at Fifth International Workshop on Product Family
Engineering, Siena, Italy, 2003.

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 198 – 209, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Defining Domain-Specific Modeling Languages
to Automate Product Derivation:

Collected Experiences

Juha-Pekka Tolvanen and Steven Kelly

MetaCase,
Ylistönmäentie 31,

FI-40500 Jyväskylä, Finland
{jpt, stevek}@metacase.com
http://www.metacase.com

Abstract. Domain-Specific Modeling offers a language-based approach to raise
the level of abstraction in order to speed up development work and set variation
space already at specification and design phase. In this paper we identify
approaches that are applied for defining languages that enable automated
variant derivation. This categorization is based on analyzing over 20 industrial
cases of DSM language definition.

1 Introduction

Domain-Specific Modeling (DSM) can raise the level of abstraction beyond coding
by specifying programs directly using domain concepts. The final products can then
be generated from these high-level specifications. This automation is possible because
the modeling language and generator only need to fit the requirements of one domain,
often in only one company [8], [11].

This paper examines approaches applied for DSM language creation. Although
there exists a body of work done on language development, most of this deals only
with textual languages, and concentrates on their compilers rather than the languages.
In general, such research has only looked at the initial creation of the languages (e.g.
[1] [2]). Fewer studies (e.g. [9], [10]) have investigated the actual process of language
creation, or of refinement and evolution of languages that are already in use.
Moreover, the typical focus of a DSM language, providing models as input for
generators, gives a special perspective to modeling language creation.

This paper identifies and categorizes approaches used for defining DSM languages.
It is based on an analysis of cases that created DSM languages to support model-
based software development and especially to automate product variant creation.
Although all the DSM languages studied were implemented as metamodels and were
not tied to customizing an available language, the approaches identified may also
serve language creation that is based on extending available metamodels or using
profiles for more lightweight language definition work.

In the next section we describe the cases and how they were analyzed in more
detail. Section 3 describes the approaches identified by characterizing their main

 Defining Domain-Specific Modeling Languages to Automate Product Derivation 199

focus and by giving a representative example1 of a DSM in that category. Sections 4
and 5 evaluate the categorization and summarize the experiences gathered.

2 About the Studied DSM Cases

This study is based on data gathered from over 20 cases of DSM creation. The cases
were chosen to cover different domains and modeling: from insurance products to
microcontroller-based voice systems. Table 1 shows the cases, their problem domains
and solution domains. The fourth column refers to the DSM creation approaches,
which are discussed in more detail in Section 3. The cases are sorted by the fourth
column for the benefit of the reader.

All the cases applied model-based development by creating models that then
formed the input for code generation. Thus, DSM language creation was not only
applying modeling to get a better understanding, support communication or have
documentation, but for automating development with domain-specific generators.
Actually, in most of the cases the generators aim to provide full code from the
modelers’ perspective. This means that no changes to the generated code were
expected to be needed. In all the cases, the target platform (i.e. available components
and generated output language) was already chosen before the DSM language
creation started. With the exception of cases that generated XML, the final detailed
structure and composition of the generated output was left open and in most cases
new domain framework code was created. A domain framework provides a well-
defined set of services for the generated code to interface to.

Many of these domains, and hence also their respective DSM languages, can be
characterized as rather stable; some however were undergoing more frequent
changes. Some languages have been used now for several years whereas some
have only just been created. None of the languages were rebuilt during the DSM
definition process, but rather maintained by updating the available language
specification. All the language definitions were also purely metamodel-based: i.e.
complete freedom was available when identifying the foundation for the language.
In other words, none of the cases started language definition by extending UML
concepts via profiles etc. The largest DSM languages have several individual
modeling languages and over 580 language constructs, whereas the smallest are
based on a single modeling language and less than 50 constructs. As a comparison,
UML has 286 constructs according to the same meta-metamodel as the one applied
in the analyzed cases.

The data on DSM development (also know as method construction rationale [9])
was gathered from interviews and discussions, mostly with the consultants or in-
house developers who created the DSM languages, but also with domain engineers
and those responsible for the solution architecture and tool support. All the languages
were implemented with the same tool [5] and access to the language definitions
(metamodels) was available for content analysis [7] while analyzing the cases.

1 Due to confidentiality of industrial DSM cases, not all cases can be illustrated in detail.

200 J.-P. Tolvanen and S. Kelly

Table 1. DSM cases by domain and generation target

Case
ID

Problem domain Solution domain/
generation target

Creation
approach(es)

1 Telecom services Configuration scripts 1

2 Insurance products J2EE 1

3 Business processes Rule engine language 1

4 Industrial automation 3 GL 1, (2)

5 Platform installation XML 1, (2)

6 Medical device configuration XML 1, (2)

7 Machine control 3 GL 1, 2

8 IP telephony CPL 2, (1)

9 Geographic Information
System

3 GL, propriety rule
language, data structures

2

10 SIM card profiles Configuration scripts and
parameters

2

11 Phone switch services CPL, Voice XML, 3 GL 2, (3)

12 eCommerce marketplaces J2EE, XML 2, (3)

13 SIM card applications 3 GL 3

14 Applications in
microcontroller

8-bit assembler 3

15 Household appliance
features

3 GL 3

16 Smartphone UI applications Scripting language 3

17 ERP configuration 3 GL 3, 4

18 ERP configuration 3 GL 3, 4

19 Handheld device
applications

3 GL 3, 4

20 Phone UI applications C 4, (3)

21 Phone UI applications C++ 4, (3)

22 Phone UI applications C 4, (3)

23 Phone UI applications C++ 4, (3)

3 DSM Definition Approach Categorization

Analysis of the metamodels revealed that the languages differed greatly with regard to
their concepts, rules and underlying computational model (see samples in Fig. 1, 2
and 3). The collected data indicates that the driving factor for language construct
identification was based on at least four approaches:

 Defining Domain-Specific Modeling Languages to Automate Product Derivation 201

1. Domain expert’s or developer’s concepts
2. Generation output
3. Look and feel of the system built
4. Variability space

This list of approaches is not complete (being based on a rather limited set of
cases), nor are the approaches completely orthogonal to each other. Actually, many of
the cases applied more than one construct identification approach. In the following
subsections we describe these approaches in more detail and discuss how the
languages’ constructs were identified and defined. We also attempt to describe the
process of language creation (identification, definition, validation, testing), and
discuss the need for a domain framework to ease the task of code generation.

3.1 Domain Expert’s or Developer’s Concepts

One class of DSM definitions seemed to be based on concepts applied by domain
experts and developers of the models (cases 1–8 as listed in Table 1). Fig. 1 shows a
sample DSM of this class (case 2). All the modeling concepts are related to insurance
products: an insurance expert draws models like this to define different insurance
products, and then the generators produce the required insurance data and code for a
J2EE website.

Fig. 1. DSM example: modeling insurance products

202 J.-P. Tolvanen and S. Kelly

This type of language raises the level of abstraction far beyond programming
concepts. Because of this, the generated output could easily be changed to some other
implementation language. Similarly, users of these languages did not need to have a
software development background, although in most cases they had. The
computational models behind these languages were fairly simple and consistent over
the cases analyzed: all were based on describing static structures or various kind of
flows, their conditions and order. Code was usually produced by listing each model
instance separately, along with its properties and relationships to other model
elements. The code generation was guided by the relationship types, e.g. code for
composite structures and flow-based ordering was generated differently.

Languages based on domain experts’ concepts were considered easy to define: for
an expert to exist, the domain must already have established semantics. Many of the
modeling concepts could be derived directly from the domain model, as could some
constraints. Constraints specifically related to modeling often needed to be refined, or
even created from scratch, together with the domain experts. This process was rather
easy as testing of the language could easily be carried out by the domain experts
themselves. If the modelers were not themselves software developers, language
visualization (e.g. the visual appearance of the notation), ease of use and user-
friendliness were emphasized.

3.2 Generation Output

One class of DSM definitions was driven by the required code structure: modeling
languages concepts were derived in a straightforward way from the code constructs
(cases 7–12). An example of this kind of DSM is the Call Processing Language (CPL)
[4], used to describe and control Internet telephony services (cases 8 and 11). The
required XML output forms a structure and concepts for the modeling language (see
Fig. 2).

DSM concepts to describe static parts like parameters and data structures, or the
core elements and attributes in CPL and XML above, were quick and easy to define.
The real difficulty was in finding appropriate concepts for modeling the behavioral
parts and logic based on domain rules. This was achieved when the underlying
platform provided services the models could be mapped to. This is often called
analyzing the variability space (see Section 3.4). Once defined, the services and
modules of the platform could even be applied directly as modeling concepts, or by
having general interface concepts that allowed the modeler to choose or name the
required platform service.

If a domain could not be defined or an existing architecture was not available,
languages tended to use modeling only for the general static structures. The rest was
done with textual specifications – often directly with programming concepts that do
not provide domain-specific support.

A similar class of modeling languages are those originating from coding concepts,
such as UML, schema design languages and various code visualization add-ons in
IDE environments. Having models and code at substantially the same level of

 Defining Domain-Specific Modeling Languages to Automate Product Derivation 203

Fig. 2. DSM example: Call Processing

abstraction typically also raises the need for reverse engineering. This is similar to a
class of tools, Microsoft’s Whitehorse, Rational’s XDE, Borland’s TogetherJ, that
aim to offer transparency between the use of models and textual specifications.

Such a close mapping to programming concepts did not raise the level of
abstraction much, and offered only minor productivity improvements. Typical
benefits were better guidance for the design and early error prevention or detection.
Using the CPL/XML as an example, designs could be considered valid and well-
formed already at the design stage. In that way it was far more difficult to design
Internet telephone services that were erroneous or internally inconsistent: something
that was all too easy in hand-written CPL/XML.

3.3 Look and Feel of the System Built

Products whose design can be understood by seeing, touching or by hearing often led
to languages that applied end-user product concepts as modeling constructs (cases 11–
23). Fig. 3 gives an example of a language whose concepts are largely based on the
widgets that Series 60 and Symbian-based smartphones [6] offer for UI application
development (case 16). The behavioral logic of the application is also described
mostly based on the widgets’ behavior and the actions provided by the actual product.

204 J.-P. Tolvanen and S. Kelly

Fig. 3. DSM example: Smartphone UI applications

The generator produces each widget and code calling the services of the phone
platform. Some framework code was created for dispatching and for multi-view
management (different tabs in the pane). By using domain-specific information, much
modeling work could be saved: for instance, the normal behavior of the Cancel key is
to return to the previous widget. Relationships for Cancel transitions thus need not
normally be drawn, but can be automatically generated; only where Cancel behaves
differently need an explicit relationship be drawn.

Identification, definition and testing of the language constructs were considered
easier in this approach than any other language construct identification approach.
Therefore, language creation could often be carried out by external consultants with
only a little help from domain experts. Although the language definition was
relatively straightforward, the main challenges seemed to be in relating other types of
modeling elements and constraints to those constructs originating from the look and
feel. If the look and feel constructs were sufficiently rich to also cover functionality,
the level of abstraction of modeling was raised substantially beyond programming.

 Defining Domain-Specific Modeling Languages to Automate Product Derivation 205

In many cases, the look and feel based cases had an existing framework, product
platform or API, which formed a reasonably solid foundation for the key modeling
language concepts. The APIs varied in their levels, from very low-level APIs near the
code, to very abstract operations and commands. The simpler generators usually
produced the code as a function per widget or similar state, with the end of the
function calling the next function based on user input. Tail recursion was used to
reduce stack depth where necessary. More complex generators produced state-based
code, either in-line or as state transition tables. None of the languages based on look
and feel required frequent reverse engineering, but some called for importing libraries
as model elements. Usually only interfaces were required for these libraries, but in at
least one case components with their implementation (i.e. whitebox) were needed.
Generators targeting other implementation languages were not defined, although that
was considered possible to achieve.

3.4 Setting the Variability Space

The final language definition approach was based on expressing variability (cases 17–
23). Such cases were typical in product families, where languages were applied for
variant design. Typically, the variability space was captured in the language concepts,
and the modelers’ role was to concentrate on the issues which differ between the
products. All the cases that were based on describing variability had a platform that
provided the common services the generated code interfaced with. This interfacing
was typically based on calling the services of the platform, but there were also cases
where generators produced the component code.

Languages describing variability were among the most difficult DSMs to create.
The main reason was the difficulty to predict the future variants. This called for
flexible language definitions that were possible to extend once new kinds of
variations arose. Languages for pure static variability (often for configuration) were
found relatively easy to create, however. The difficulty lay in behavioral variability
and coming up with a language that supported building almost any new feature based
on the common services of the platform. The success of the language creation was
dependent on the product expert’s knowledge, vision to predict the future, and insight
to lay down a common product architecture. Therefore, the role of external
consultants to support DSM creation was often smaller than with other approaches. In
the best cases, though, the external consultant’s experience of DSMs and generators
complemented the expert’s experience in the domain and its code. This normally
required a consultant who was himself an experienced software developer (although
not in that domain), and an expert who was not too bound to a low-level view of code.

In these cases language constructs were explored using domain analysis to identify
commonalities and variabilities among the products to be built using model-based
code generators. For example, Weiss and Lai [12] present a method to detect
commonality and variability of both static and dynamic nature. Each variation point
will be specified with variation parameters. By setting parameters for variation it
offers a clear starting point for language concepts, like proposing data types and their
variation space as well as constraints for combining variability. Feature modeling [3]
was not applied to explore variability as it was found to operate at a level too general
to identify DSM concepts. Feature models do not capture the dependencies and

206 J.-P. Tolvanen and S. Kelly

constraints that are required to define modeling constructs. Among the studied cases,
product architecture served better to find product concepts and their interrelations.

A product family platform and its supporting framework also have a notable
influence on the modeling language concepts and constraints. Commonalities were
usually hidden into the generator or framework in addition to complex issues which
can be solved in an automated generator. In many cases there were several different
computational models used to support all the required views of the systems. For
example, in embedded product families, it was common to follow the state machines
with domain specific extensions to best describe the system’s behavior and
interactions.

The level to which abstraction was raised was dependent on the nature of
variability. As would be expected, cases where the variability could be predicted
reasonably well showed higher levels of abstraction than those where future
variability could not be pinned down. A common solution for these latter cases was to
make the modeling language and generators easy to extend, allowing the level of
abstraction to be raised substantially now, and making it possible to maintain that
level in the future.

4 Evaluation of the Categorization and DSM Definition
 Approaches

After having categorized the cases according to which of the four approaches were
used, we noticed that each case had used only one or two approaches. Further, where
there were two approaches, only certain pairs of approaches seemed to occur. Of all
16 possible pairs made up of a primary approach and a secondary approach, only 5
were actually found in the data. This prompted us to re-order the categories into the
order now shown (previously generation output was last), so that each case used one
approach and its successor or predecessor.

Cases performed mainly by the customer mostly occur early in the list. Conversely,
those cases which had been performed by more experienced DSM practitioners
tended to come later in the list. The order of approaches thus probably reflects an
order of increasing DSM maturity.

Some cases were found to resemble others from the language point of view,
although the product domain and generated code were different (e.g. the cases of ERP
configuration and eCommerce marketplace).

Approach 1, domain expert’s concepts, seems to provide little insight. In some
cases it simply means that somebody else identified the concepts, and we thus lack the
information of which of the other approaches they used. In the three cases where the
customer was not mainly responsible for the concept identification, the DSM project
has not progressed beyond an initial proof of concept. These cases thus probably
reflect domains that are immature, and where the DSM consultants lacked previous
experience that would have enabled them to raise the maturity in that domain.

In approach 2, generation output, there were significant differences between those
cases whose generation output was itself an established domain-specific language,
and those where the output was a generic language or an ad hoc or format such as a
configuration file. Those cases worked best where the output was an established

 Defining Domain-Specific Modeling Languages to Automate Product Derivation 207

domain-specific language, because the domain was more mature and the company in
question already had a mature implementation framework, either their own or from a
third party. In both CPL cases, the companies wanted their own additions to the
languages, further improving the domain specificity.

When the output is in a generic programming language, it would often be better
apply an approach other than generation output, to truly raise the level of abstraction.
When the output is to an immature format, it would often be better to analyze the
domain further to improve its understanding and the output format, rather than build a
direct mapping to the existing shaky foundation.

Approach 3, look and feel, can be regarded as the first of the four approaches that
consistently yields true DSM solutions. It is thus a valid approach to apply in new
DSM projects, whenever the end product makes it possible. It was also the most
commonly applied approach, found in 13 out of 23 cases.

Approach 4, variability space, was only found in combination with approach 3.
The cases where it was the primary approach, 20–23, were all in the domain of phone
UI applications, generating C or C++ (case 16 was a simpler domain, a subset of
these). These cases are certainly among the most complex, and this partly accounts for
the similar solutions. A second major factor is that experience with previous similar
cases had provided a proven kind of solution for this domain. Whilst each language
was created from scratch, the knowledge of previous cases from this domain certainly
influenced the way the cases were approached. The resulting DSM languages and in
particular generators differed substantially, reflecting the different needs of the
domains, customers and frameworks.

The use of the variability space approach in the radically different domain of ERP
configuration (17 & 18) shows that this approach is not restricted to state-based
embedded UIs. Perhaps the most likely explanation for this clustering of cases is that
this approach requires the most experience from the language creators, and yet also
offers the most power. In particular, the combination of the almost naïve end-user
view of the look and feel approach with the deep internal understanding of the domain
required by the variability space approach seems to yield the best solutions,
particularly in the most complex cases. When used together, the look and feel
approach tended to identify the basic concepts, and the variability space approach
helped define relationships and what properties or attributes each concept should
have.

5 Conclusion

In this paper we have examined approaches to identifying concepts for DSM
languages, based on experiences collected from over 20 real-world cases. The cases
show that there is no single way to build DSM languages: more than one language
creation approach was applied in the majority of cases. In the cases studied, we
identified four different approaches used by the domain expert, expert developer or
DSM consultant.

Of the four approaches in our categorization, the first relied on the domain expert’s
intuition or previous analysis to identify concepts. This approach is essential in that it

208 J.-P. Tolvanen and S. Kelly

emphasizes the role of the expert, but forms a weak point of the categorization in that
the experts themselves must normally have applied one of the other approaches. The
second approach identifies concepts from the required generation output, and can only
be recommended where that output is already a domain-specific language. The third
and fourth approaches, end product look and feel and variability space, seem to be the
best overall, although not applicable in every case. Using them together seemed
particularly effective in raising the level of abstraction and speeding up development.

Defining a language for development work is often claimed to be a difficult task:
this may certainly be true when building a language for everyone. The task seems to
become considerably easier when the language need only work for one problem
domain in one company. According to the cases analyzed the main difficulties are
found in behavioral aspects and in predicting future variability. Almost all cases with
both these difficulties required experienced DSM consultants, and all used more than
one approach to identify concepts.

In all cases, DSM had a clear productivity influence due to its higher level of
abstraction: it required less modeling work, which could often be carried out by
personnel with little or no programming experience. The increase in productivity is
not surprising, considering that research shows the best programmers consistently
outperform average programmers by up to an order of magnitude. DSM embeds the
domain knowledge and code skill of the expert developer into a tool, enabling all
developers to achieve higher levels of productivity.

This paper targets automated derivation of software products based on design
specifications. It examines and analysis experiences from practice of how DSM
language creators identify and define modeling constructs. More research work is
needed to better understand the DSM creation process, and to disseminate the skills to
a wider audience. Particularly welcome would be empirical studies that cover more
cases from various domains, and using different metamodeling facilities. As DSM use
grows, research methods other than field and case studies would also be welcome, for
example surveys and experiments.

References

1. Cleaveland, J. C., Building application generators, IEEE Software, July (1988)
2. Deursen van, A., Klint, P., Little languages: Little maintenance? Journal of Software

Maintenance, 10:75-92 (1988)
3. Kyo, C., K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, A.S. Peterson, Feature -

Oriented Domain Analysis (FODA) Feasibility Study, Technical report CMU/SEI-90-TR-
21, Software Engineering Institute, Carnegie Mellon University (1990)

4. Lennox, J., et al., CPL: A Language for User Control of Internet Telephony Services.
Internet Engineering Task Force, IPTEL WG, April (2004)

5. MetaCase, MetaEdit+ Method Workbench 4.0 User’s Guide, www.metacase.com (2004)
6. Nokia Series 60 SDK documentation, version 2.0, 2 (www.forum.nokia.com/) (2004)
7. Patton, M., Qualitative Evaluation and Research Methods, Newbury Park, Sage, 2nd

edition (1990)
8. Pohjonen, R., Kelly, S., Domain-Specific Modeling, Dr. Dobb’s Journal, August (2002)

 Defining Domain-Specific Modeling Languages to Automate Product Derivation 209

9. Rossi, M., Lyytinen, K., Ramesh, B., Tolvanen, J.-P., Managing Evolutionary Method
Engineering by Method Rationale, Journal of the Association for Information Systems
(AIS), (5) 9 article 12, (2004)

10. Sprinkle, J., Karsai, G., A domain-specific visual language for domain model evolution,
Journal of Visual Languages and Computing, Vol 15 (3-4), Elsevier (2004)

11. Tolvanen, J.-P., Kelly, S., Domain-Specific Modeling (in German: domänenspezifische
Modellierung) ObjektSpektrum, 4, July/August (2004)

12. Weiss, D., Lai, C.T.R., Software Product-line Engineering, Addison Wesley (1999)

Supporting Production Strategies as Refinements of the
Production Process

Oscar Díaz, Salvador Trujillo, and Felipe I. Anfurrutia

ONEKIN Group, University of the Basque Country,
PO Box: 649,

20009 San Sebastián Spain
Phone: + 34 943 018 064

{oscar.diaz, struji, felipe.anfurrutia}@ehu.es

Abstract. The promotion of a clear separation between artifact construction and
artifact assembling is one of the hallmarks of software product lines. This work
rests on the assumption that the mechanisms for producing products consider-
ably quicker, cheaper or at a higher quality, rest not only on the artifacts but
on the assembling process itself. This leads to promoting production processes as
“first-class artifacts”, and as such, liable to vary to accommodate distinct features.
Production process variability and its role to support either production features or
production strategies are analyzed. As prove of concept, the AHEAD Tool Suite
is used to support a sample application where features require variations on the
production process.

1 Introduction

1.1 Problem Statement

Software Product Lines (SPLs) are defined as “a set of software-intensive systems,
sharing a common, managed set of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a common set of core assets in
a prescribed way” [7]. In this paper, we focus on “the prescribed manner” in which
products are manufactured: the production plan.

A production plan is “a description of how core assets are to be used to develop a
product in a product line” [6]. Among the distinct concerns involved in a production
plan, this paper focuses on the production process which specifies how to use the
production plan to build the end product [6]. As stated in [14] “product production
has not received the attention that software architecture or programming languages
have”. It is often so tightly coupled to the techniques used to create the product pieces
that both are indistinguishable. For example, integrated development environments (e.g.
JDeveloper) make it seamless by automatically creating a build script for the project or
system under development so that the programmer can be unaware of the process that
leads to the end product.

Indeed, production plans have been traditionally considered as mere scripts, and left
to the programmers that built the other artifacts. In a traditional setting, build scripts are
often kludged together for that, built by people who would rather be writing source

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 210–221, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Supporting Production Strategies as Refinements of the Production Process 211

code than developing a process. Such scripts are notorious for their poor or misleading
documentation [9], which was thought to be consumed by other core-asset developers.

SPLs change this situation by explicitly distinguishing between core-asset develop-
ers and product developers where the latter are involved in intertwining the core assets
to obtain the end product. This distinction not only reinforces a separation of concerns
between programming and assembling, but explains the preponderant and strategic role
that production plans have in SPLs. That is, there is a growing evidence that the mech-
anisms for producing products considerably quicker, cheaper or at a higher quality, rest
not only on the components but on the assembling process itself. Despite this obser-
vation, most approaches just support a textual description of the production plan [5],
where variability or requirements specific to the production plan are almost overlooked.

1.2 Our Contribution

Based on these observations, we strive to turn production processes into “first-class
artifacts”. Specifically, the main contribution of this paper rests on observing how the
explicit and separate specification of the product process permits to account for varia-
tions at both the product and process level. To this end, the paper distinguishes between
“product features” and “build-process features”. By “product features” we meant those
that characterize the product as such, whereas “build-process features” refer to varia-
tions on the associated process. Hence, two end products can share the same “product
features” but being produced along distinct process standards.

We attempt to show some evidence of how this process variability impacts both
the modifiability (i.e. variability along time) and the configurability (i.e. variability in
the product space) of SPLs. To this end, these ideas are supported for AHEAD [3], a
methodology for SPLs based on step-wise refinement. So far, the companion tool suite,
AHEAD TS, (1) hides the production process into the integrated development environ-
ment, and (2) excludes build scripts from refinement. Hence, the upgrades include, (1)
an explicit representation of the production process that AHEAD implicitly conducts,
and (2) a refinement operator for production processes. Production processes are speci-
fied using Ant [12], a popular script language in the Java world.

The rest of the paper is structured as follows. Section 2 outlines the AHEAD
methodology. Section 3 introduces the running example. Process refinement at work
is the subject of section 4 and 5. Finally, conclusions are given.

2 A Brief on the AHEAD Methodology

Step-wise refinement (SWR) is a paradigm for developing a complex program from a
simple program by incrementally adding details [11]. GenVoca is a design methodology
for creating application families and architecturally extensible software, i.e., software
that is customizable via module additions [2]. It follows traditional SWR with one ma-
jor difference: instead of composing thousands of microscopic program refinements,
GenVoca scales refinements so that each adds a whole feature to a program, being a
feature a “product characteristic that is used in distinguishing programs within a fam-

212 O. Díaz, S. Trujillo, and F.I. Anfurrutia

ily of related programs” [3]1. Hence, a final program (i.e. a product) is characterized as
a sequence of refinements (i.e. features) applied to the core artifacts. This permits the
authors to conceptualize the production process as a mathematical equation where core
assets are mapped into constants, and refinements are functions that add features to the
artifacts.

This approach is supported by the AHEAD Tool Suite (AHEAD TS) [3] where re-
finements to realize a feature are packaged into a layer. Broadly speaking, the base
layer comprises the core artifacts, where lower layers provides the refinements that per-
mit enhancing the core artifacts with a specific feature. The base layer is then, the root
of the refinement hierarchy2.

Layer composition implies the composition of the namesake artifacts found in each
layer. Implementation wise, a layer is a directory. Hence, feature composition is direc-
tory composition. Artifact composition depends on the nature of the artifact. Hence, the
composition operator is polymorphic. Java files, HTML files, Ant files will each have
their own unique implementation of the composition operator.

For the perspective of the production process, it is most important to distinguish
between:

– the intra-layer production process, which specifies the production process for the
set of artifacts included within a layer or upper layers (from which artifacts are
“inherited”). This is specified as Ant files in AHEAD TS. This would correspond to
the “product-build process” in Chastek’s terminology [6].

– the inter-layer production process, which specifies how layers are intertwined to
obtain the end product. This is hard-coded in AHEAD TS. This is referred to as
“product-specific plan” in Chastek’s parlance [6].

Unfortunately, AHEAD TS does not consider yet XML artifacts. Since the production
process is an XML document 3, production processes are not refined as such. Lower
layers always override the build.xml file of upper layers so that the build.xml of the leaf
layer is the only one that remains.

This implies that leaf layers should be aware of how to assemble the whole set of
artifacts down in the refinement hierarchy. This could be a main stumbling block to
achieve loose coupling among layers, and leads to increasing complex build.xml files as
you go down in the layer hierarchy.

Turning production processes into first-class artifacts makes production processes
liable to be refined as any other artifact. This permits to account for both “product fea-
tures” and “process features”. By “product features” we meant those that characterize
the product as such, whereas “process features” refer to variations on the associated
process.

1 Other definitions of features include "a logical unit of behavior that is specified by a set of
functional and quality requirements" [4] or “a recognizable characteristic of a system relevant
to any stakeholder” [10].

2 Design rules checking is also introduced to specify feature dependencies (e.g. selection of
feature F1 disables feature F2) [1].

3 AHEAD TS names it ModelExplorer.xml, but it plays the same role than build.xml in traditional
Java projects.

Supporting Production Strategies as Refinements of the Production Process 213

It is worth noting that “product features” commonly impact the intra-layer produc-
tion process (i.e. the process adds a new artifact to build the end product). By contrast,
“process features” influence the inter-layer production process (i.e. the process that in-
dicates how layers are intertwined). Again, this distinction reinforces the separation of
concerns between asset developers and product developers.

Different upgrades were conducted into AHEAD TS to accommodate variability into
the production process, namely

– intra-layer production processes are currently specified as ANT files 4. Since
AHEAD TS does not consider yet XML artifacts, and ANT files are XML docu-
ment, production processes are not refined as such. Lower layers always override
the build.xml file of upper layers so that the build.xml of the leaf layer is the only
one that remains. This implies that leaf layers should be aware of how to assemble
the whole set of artifacts down into the refinement hierarchy. This could be a main
stumbling block to achieve loose coupling among layers, and leads to increasing
complex build.xml files as you go down in the layer hierarchy. To overcome this
situation, the refinement operator has been extended to handle ANT files.

– the inter-layer production process is hard-coded into the AHEAD TS. This produc-
tion process is made explicit, and hence, subject to refinement.

Next sections illustrate the advantage of bringing refinement to the process realm
through a running example.

3 The Sample Problem: WebCalculator

Batory et al. uses a Java-based calculator to illustrate how AHEAD can nicely accom-
modate the refinement process whereby features are gradually added to the core assets
till the end product is obtained. In their example, refinements affect artifacts other than
the product process [3].

We have used a similar domain but in a Web setting, and where variations mainly
affect the production process. WebCalculator is a J2EE Web applications [16] which
has been developed using Apache Struts5. A Web application refers to an aggregate of
artifacts, namely

– Java class files (action classes), needed libraries, and resource files,
– JSP pages and their helper Java classes,
– Static documents: images, HTML pages, and so on,
– Web deployment descriptors, configuration files, and tag libraries.

Web applications (also known as Web Modules) are packaged into a Web ARchive
(WAR) which follows a directory structure defined in Java Servlet Specification [8].
Mostly, this structure corresponds with public_html content which is shown on the left
of figure 1.

4 AHEAD TS names it ModelExplorer.xml, but it plays the same role than build.xml in traditional
Java projects.

5 http://struts.apache.org/

214 O. Díaz, S. Trujillo, and F.I. Anfurrutia

Fig. 1. Refinement layers: each layer accounts for a “product feature”

Broadly speaking, a layer comprises the set of artifacts that realize a given feature.
This might include a process. Being in a Java setting, Ant is used to specify this process;
the so-called, build.xml file. [15].

Ant is a Java-based tool for scripting build processes. Scripts are specified using
XML syntax: <project> is the root element whose main child is <target>. A target
describes a unit of enactment in the production process. This unit can be an aggregate
of atomic tasks such as compile, copy, mkdir and the like.

The process itself (i.e. the control flow between targets) is described through a tar-
get’s attribute: “depends”. A target is enacted as long as the target it depends to, has
already been enacted. This provides a backward-style description of the process flow.
Data sharing between targets is achieved through the external file directory.

Figure 26 shows a snippet of the specification of the production process for the base
layer. According with this figure, the production plan includes the following steps:

1. compile Java classes, and get the byte code,
2. package artifacts (classes, libraries, pages, resources, etcetera) into a WAR file,
3. deploy web application into a container.

The use of Ant for specifying product processes is not new. After all, Java programmers
have been using Ant as a scripting language for years. However, instead of burying it
into the integrated development environment, we make it explicit as any other artifact.
This allows for refinements.

4 Intra-layer Production Process Refinement

Previous section describes the base layer of WebCalculator. This base layer might then
be refined to account for distinct “product-features”. The example introduces two fea-
tures which imply a refinement in the production process, namely

6 Space limitations prevent us for given the full build.xml files. Some targets are collapsed and
variables are defined in properties files.

Supporting Production Strategies as Refinements of the Production Process 215

Fig. 2. Product process: base artifact

– the container feature. The variants include Tomcat 7 and JBoss8. By default, there
is no base web container 9,

– the locales feature. The alternatives are EN (i.e. English), es_ES (Spanish at Spain),
and eu_ES (Basque at Spain). The base locale is EN.

Figure 1 shows one possible layer composition, which equation is
“es_ES(Tomcat(base))”. The base layer contains the base artifacts, whereas the other
layers contain either refinements on existing artifacts or new artifacts. The important
point to notice is that both Tomcat and es_ES features imply the refinement of the prod-
uct process. That is, deploying WebCalculator in Tomcat requires to refine the build.xml
accordingly.

AHEAD does not provide a way to refine XML artifacts. However, Batory et al. state
the Principle of Uniformity whereby “when introducing a new artifact (type), the tasks
to be done are (1) to support inheritance relationships between instances and (2) to
implement a refinement operation that realizes mixin inheritance”[3].

This principle is realized for build.xml artifacts as follows. Inheritance is supported
by building on the uniqueness of the <target> name within a given <project>. Basi-
cally, the project maps to the notion of class, and the target corresponds to a method.
This permits to re-interpret inheritance for Ant artifacts by introducing the following
tags:

1. <xr:refine-project> which denotes a project refinement (a kind of “is_a”),
2. <xr:super-target/> which is the counterpart of the “super” constructor found in

object-oriented programming languages

7 http://jakarta.apache.org/tomcat/
8 http://www.jboss.org/
9 A design rule can be used here to ensure that the final product will have a container.

216 O. Díaz, S. Trujillo, and F.I. Anfurrutia

Fig. 3. Product process: refinement for feature Tomcat

Fig. 4. Product process: refinement for feature es_ES

Hence a <refine-project> can refine a <project> by introducing a new <target>, ex-
tending a previously existing <target> (calling <super-target>) or overriding a <tar-
get> (by introducing this target with new content).

An example is given for the Tomcat feature (see figure 3). Feature Tomcat permits
to deploy WebCalculator in the namesake container. This requires the refinement of the
build.xml artifact found in the base layer, as follows:

– a new <target> is added to prepare WAR building (prebuild),
– a new <target> is added to build WAR (build) specific for Tomcat,
– a new <target> is added to deploy it into the Tomcat container,
– target <target name= “all”> is overridden.

Likewise, feature es_ES overrides the English locale of the base layer to the Spanish
locale. The counterpart refinement is shown in figure 4. It includes extending <target
name= “prebuild”> to copy appropriate resource files. Here the <xr:super-target/>
constructor is used10.
10 It is worth noticing that the es_ES refinement requires the container been already selected.

This implies a design rule to regulate how layers are intertwined.

Supporting Production Strategies as Refinements of the Production Process 217

Fig. 5. Layer-composition product Process: base artifact

Both examples illustrate how refinements have been realized for Ant artifacts. Im-
plementation wise, the composition operator for Ant is implemented using XSLT and
XUpdate [13]. This operator can be integrated within AHEAD TS so that when build.xml
artifacts are found, the composition process is governed by the Ant plug-in.

5 Inter-layer Production Process Refinement

Previous section focuses on Ant artifacts found within a layer. These artifacts describe
the “product-build process” within a layer. By contrast, this section focuses on layer-
composition processes that state how layers themselves should be composed. This com-
prises the steps of the methodology being used. For AHEAD, these steps include:

1. feature selection. Output: a feature equation (e.g. “es_ES(Tomcat(base))”).
2. feature composition (i.e. layer composition in Batory’s parlance). Output: collective

of artifacts that support an end product.
3. enactment of the build.xml associated with the end product. Output: end product

ready to be used.

Figure 5 illustrates the targets that realize previous steps (the equation.name property
holds the feature equation):

– compose, which calls the AHEAD TS composer,
– compose-build-xml, which supports the composition operator for build.xml artifact

that AHEAD TS lacks,
– execute-build-xml, which runs the Ant script supporting the production process of

the end product,
– produce, which performs the whole production.

218 O. Díaz, S. Trujillo, and F.I. Anfurrutia

Fig. 6. Refinement layers: each layer accounts for a “process feature”

The enactment of this layer-composition script leads to an end product that exhibits the
features of the input equation. AHEAD TS hard-codes this script.

However, this work rests on the assumption that the mechanisms for producing
products considerably quicker, cheaper or at a higher quality, rest not only on the arti-
facts but on the assembling process itself. From this viewpoint, the inter-layer produc-
tion process can accommodate important production strategies that affect the process
rather than the characteristics of the final product. These strategies can affect the prod-
uct costs, increase product quality, or improve the production process.

Based on this observation, the previous base layer might be refined to account for
distinct “process-features”. The example introduces two features which imply a refine-
ment in this layer-composition process, namely

– the version feature. Consider that security reasons recommend to version each new
delivery of an end product. This implies that artifacts that conform the end product,
should have appropriate backups.

– the errorHandling feature. Errors can rise during the production process. How these
errors are handled is not a characteristic of the product but depends on managerial
strategies. Hence, the base process can be customized to support distinct strate-
gies depending on the availability of resources or the quality requirements of the
customer.

Figure 7 shows how the base process can now be refined to account for the version
feature, namely:

– a new <target> is added to back up artifacts into the versioning system. For this
purpose, Subversion is used11,

– target <target name= “produce”> is overridden.

The equation versioning(base) leads to a “product-specific plan” that supports the
naive security policy of the organization. As further experience is gained, and stringent
demands are placed, more sophisticated plans can be defined.

Likewise, figure 5 shows the “substitution_eh” policy for error handling:

11 http://subversion.tigris.org/

Supporting Production Strategies as Refinements of the Production Process 219

Fig. 7. Layer-composition process: refinement for feature versioning

Fig. 8. Layer-composition process: refinement for feature errorHandling

220 O. Díaz, S. Trujillo, and F.I. Anfurrutia

– a new <taskdef/> is added in order to extend Ant targets with try&catch routines12.
– target <target name= “compose”> is overridden in order to handle possible errors.

The base task “compose” is monitored so that when an error occurs, the last error-
free version of the artifacts outputted by “compose” are taken. This policy might
be applicable under stringent time demands or if debugging programmers are on
shortage.

The “process feature” equation (“substitution_eh(version(base)))”) then strives to re-
flect the managerial and strategic decision that govern the production plan. Making the-
ses strategies explicit facilitates knowledge sharing among the organization, facilitates
customization, eases evolution, and permits to manage resources for product production
in the same way as the product itself.

The latter is shown for the version and errorHandling features: a design rule is
needed to state that the substituion_eh policy requires the version feature to be in
place. The version feature in turn requires a new artifact, namely, subversion. It is a
well-known fact among programmers of complex systems, that setting the appropriate
environment is a key factor for efficient and effective throughput. SPLs are complex
systems, and SPL techniques should be used not only to manage the artifacts of the
product itself, but also those artifacts that comprise the environment/framework where
these products are built. These include a large number of artifacts such a compilers,
debugger, monitors or backup systems. Making explicit the layer-composition process
facilitates this endeavour.

6 Conclusions

The clear separation between artifact construction and artifact assembling is one of
the hallmarks of software product lines. However, little attention has been devoted to
the assembling process itself, and how this process might realize important process
strategies.

This work strives to illustrate the benefits of handling production processes as “first-
class artifacts”, namely:

– it permits to focus on how the product is produced rather than at what the product
does. Programmers and assemblers can wide their minds to ascertain how features
might affect the process itself so that scripting is no longer seen as a byproduct of
source code writing,

– it extends variability to the production process itself.

Using Ant for process specification, and AHEAD as the SPL methodology, this work
illustrates this approach for a sample application. Our next steps include to increase the
evidence of the benefit of the approach by addressing more complex problems, and to
investigate on the impact that distinct SPL quality measures have into the production
process.

12 This is achieved using Ant-Contrib at http://ant-contrib.sourceforge.net/

Supporting Production Strategies as Refinements of the Production Process 221

Acknowledgments. This work was partially supported by the Spanish Science and
Education Ministry (MEC) under contract TIC2002-01442. Salvador Trujillo enjoys a
doctoral grant for the MEC.

References

1. D. Batory and B.J. Geraci. Composition Validation and Subjectivity in Genvoca Generators.
IEEE Transactions on Software Engineering, 23(2):67.82, February 1997.

2. D. Batory and S. O’Malley. The Design and Implementation of Hierarchical Software Sys-
tems with Reusable Components. ACM Transactions on Software Engineering and Method-
ology, 1(4):355.398, October 1992.

3. D. Batory, J.Neal Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. IEEE Trans-
actions on Software Engineering, 30(6):355.371, June 2004.

4. J. Bosch. Design & Use of Software Architectures - Adopting and Evolving a Product Line
Approach. Addison-Wesley, 2000.

5. G. Chastek, P. Donohoe, and J.D. McGregor. Product Line Production Planning for the Home
Integration System Example. Technical report, CMU/SEI, September 2002. CMU/SEI-
2002-TN-029.

6. G. Chastek and J.D. McGregor. Guidelines for Developing a Product Line Production Plan.
Technical report, CMU/SEI, June 2002. CMU/SEI-2002-TR-06.

7. P. Clements and L.M. Northrop. Software Product Lines - Practices and Patterns. Addison-
Wesley, 2001.

8. D. Coward and Y. Yoshida. JSR 154, Java Servlet 2.4 Specication, 2003. http://www.jcp.org/
en/jsr/detail?id=154.

9. J. Creasman. Enhance Ant with XSL Transformations, 2003. http://www- 128.ibm.com/
developerworks/xml/library/x-antxsl/.

10. K. Czarnecki and U. Eisenecker. Generative Programming. Addison-Wesley, 2000.
11. E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
12. Apache Software Foundation. Apache Ant. http://www.ant.apache.org/.
13. A. Laux and L. Martin. XUpdate - XML Update Language. http://xmldborg. source-

forge.net/xupdate.
14. J.D. McGregor. Product Production. Journal Object Technology, 3(10):89.98, November/

December 2004.
15. N. Serrano and I. Ciordia. Ant: Automating the Process of Building Applications. IEEE

Software, 21(6):89.91, November/December 2004.
16. I. Singh, B. Stearns, and M. Johnson. Designing Enterprise Applications with the J2EE Plat-

form. Addison-Wesley, 2002.

H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 222 – 233, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using Variation Propagation for Model-Driven
Management of a System Family*

Patrick Tessier1, Sébastien Gérard1, François Terrier1, and Jean-Marc Geib2

1 CEA/List Saclay, F-91191 Gif sur Yvette Cedex, France
{Patrick.Tessier, Sebastien.Gerard,

 Francois.Terrier}@cea.fr
2 LIFL, Laboratoire d’informatique Fondamentale de Lille,

Université des Sciences et Technologies de Lille,
59655 Villeneuve d'Ascq Cedex
Jean-Marc.Geib@lifl.fr

Abstract. A system family model (SFM) contains a set of common elements
and a set of variable elements known as variation points. Variability modeling
is a source of numerous problems: how to express variations, how to ensure the
consistency of various views and avoid conflicts. Does the SFM cover all the
desired systems? To obtain a specific system, known as "derivation", also
known as a product, it is necessary to choose certain variation points from
among those included in the SFM model by using a feature model (built during
application domain analysis) or a decision model (after SF modelling). The SyF
approach presented in this article proposes the "variation point propagation"
concept as a means for achieving consistency and dealing with potential
conflicts between variations. Under this approach, a decision model, generated
from the SFM alone, then enables system family management: analyze
coverage of the SF application domain, automate the derivation.

1 Introduction

The model-driven approach to system development involves the following key phases
(Fig. 1. Process used to build a product):

• Modeling the system to user requirements. This phase is iterative and progressive.
The system model becomes gradually more detailed and complies, at each
successive increment, with the expressed requirements. For the approach
described in this article, the language used for modeling is UML.

• Code generation and compilation, which provide the final application from its
model.

A solution for shortening "time-to-market" for systems sharing certain features is to
apply the development principles associated with the system family concept [1, 2].
The idea is to build a single model that factorizes parts of models common to all

* This work has been partially supported by the Families European project. Programme, ITEA

project ip 02009.

 Using Variation Propagation for Model-Driven Management of a System Family 223

Fig. 1. Process used to build a product

systems in a same family and expresses system differences through inclusion of
variable elements. This generic model is then known as the SFM or "system family
model".

The system family design process usually calls for the following phases (Fig. 2.
System family design process) :

Fig. 2. System family design process

• Domain analysis: the application domain covers all requirements set for the
products. This initial phase, derived from the FODA approach [3], is intended to
classify system family requirements and produce a feature diagram. The feature
diagram is a tree structure in which each node corresponds to a feature defined as
"a prominent or distinctive user-visible aspect, quality or characteristic of a
software system or systems" [3]. The characteristics of this tree can be optional,
mandatory or linked by an "xor"-type relationship.

• SF Modeling: The second phase consists of building the system family model on
the basis of these requirements. The SFM contains both variable elements and
elements common to all of the desired products. Such modeling is progressive and
takes place by increments.

• Derivation: Phase three calls for obtaining an application model from the SFM,
which serves as its "pattern". To do so, the designer must make a set of choices
with regard to the variation points contained in the SFM.

• Code generation & compilation: Phase four includes code generation based on the
application model derived from the SFM, then compilation of this code to obtain
the final product.

For system family designers, joint use of UML and a model-driven approach holds
out the promise of enhanced productivity and better quality development, through
possible automation of some stages. However, these advantages go hand in hand with
certain constraints, which include need for:

224 P. Tessier et al.

• expressing variability in a model – this implies use of an expressive language that
is sophisticated enough to describe every possible variation in a system family
model. There may also be dependency relationships between variations included
in the requirements. It must therefore also be possible to place interdependency
constraints on the relevant variation points.

• ensuring variation point consistency between SFM views – in accordance with the
separation of concerns principle, a model is often described via several
complementary and interacting views: class diagrams, sequence diagrams, state
diagrams, etc. Such views are in fact dependent on each other. For example, an
event triggering a state machine transition may be linked to an operation call. If
that element becomes variable in one view, there may also be impact on the other
views in the model. In a multiview environment such as UML, it is necessary to
provide for variability consistency management.

• validating full coverage by the SFM of SF requirements – in the system family
development context, all possible systems must be defined for a given family. This
requirement is described by the feature diagram. The difficulty consists of ensuring
that once the SFM has been fully described, it will allow perfect derivation of all
products defined in the feature diagram.

• deriving a system from its SFM. The question is how to derive from the SFM a
well-formed system, and where a variation has been specified, how to modify the
model to account for its impact.

There are numerous approaches that implement processes like the one shown in Fig.
2. System family design process. In the FODA-type approaches from which the
feature model concept originates [3-6], there is no special formalism for expressing
variability. These approaches rely essentially on the feature diagram for management
of system family variations. Their main challenge is to devise an SFM that complies
with the feature diagram [7] while ensuring consistency between variation points.

Unlike the above, the Kobra approach [8] provides a special formalism for
expressing variability. It also defines a set of rules to keep SFM views consistent. Its
strong point is facilitating derivation. To do so, it relies on use of a decision model.
This model is devised as a treelike check list. The list asks a series of questions about
decisions on SFM options and gives possible answers, which may in turn refer to new
decisions. Each choice adds to the decision model a set of instructions for modifying
the SFM so that the desired product can be obtained. If, for example, an operation is
marked "optional", a choice not including that operation will result in instructions to
delete it. To obtain a given product, the designer merely follows the relevant decision
model path and applies the corresponding instructions to the SFM. The only drawback
of this approach is that the SF designer is responsible for building the decision model,
with a resulting risk of inconsistencies between this model and SFM variation points.
There is no means for verifying overall consistency.

The Triskell team approach described in [9-11] is characterized by use of a feature
diagram and a decision model. The decision model is a tree whose nodes are classes
linked to each other by inheritance relationships. Each class is then responsible for
generating a specific system. The classes are designed to "own" the operations
applicable to an SFM for obtaining a particular system. This approach is also
characterized by use of OCL rules to ensure consistency between model views.

 Using Variation Propagation for Model-Driven Management of a System Family 225

However, it provides no means for ensuring that the SFM includes all models of
systems belonging to a same family.

One way of affording consistency in variations from one SFM view to another
under the approaches studied here is to set appropriate rules. None of these
approaches can, however, guarantee full coverage by the SFM of the systems to be
produced. The derivation stage remains a stumbling block. In FODA-type
approaches, this problem is transferred to the SFM, which must ensure compliance
with the feature model. The approaches described in [8-11] call for derivation to take
place via the decision model. The designer nevertheless remains responsible for
creating the decision model and must manually indicate the impact of variations on
the SFM.

The following table summarizes the positions of these different approaches with
regard to the four main difficulties inherent in developing system families like the one
selected for our study.

 FODA-type

approach Kobra
Triskell

approach

Expression of variability in
the SFM

no special
formalism

yes yes

Consistency of variation
points in the SFM no

Set of
textual rules

Set of OCL
rules

Affording full SFM
coverage of product
models belonging to a
given family

no no no

SFM derivation Feature model

Decision
model built

by the
designer

Decision
model built by
the designer

Fig. 3. Comparison summary

Analysis of this table shows that a set of textual or OCL rules can be used to ensure
variation point consistency. None of the approaches studied can, however, validate
SFM coverage of all products in a given family. Note that, while SFM derivation can
take place via a decision model, the latter must always be built manually.

The SyF approach presented here therefore proposes the following solutions:

- for expressing variability in the SFM – use of a structure known as a variation
group, to supplement variation points for the purpose of simplifying the
expression of constraints on said points.

- for achieving variation point consistency in the SFM – a variation propagation
mechanism.

- for verifying SFM coverage of family product models – a mechanism to
automatically generate decision models from an SFM.

- for derivation from the SFM – a mechanism to generate products from an
SFM and the decision tree.

The following pages are divided into several sections. Sections 2 and 3 cover the
first two aspects described above, i.e. expressing variability and ensuring
consistency. Section 4 addresses the two remaining aspects by describing the
decision model concept and its utilization.

226 P. Tessier et al.

2 Expressing Variability in the SFM

An SFM consists of elements common to a given set of systems and elements that
vary from one system to another. SFM description thus implies devising concepts to
express variability within the model. The purpose of this section is to propose means
to do so. A simple case study based on a family of watches is used to illustrate the
proposals.

2.1 "Watch" Case Study

In subsequent paragraphs, a family of watches is used to illustrate the various
mechanisms and applications of interest. The products included in this family can
perform the following functions: display current time, display "dualTime", i.e. also
show current time for another time zone, trigger an alarm (buzzer or vibration), act as
a "heart rate controller" by displaying the rate of heartbeat.

Fig. 4. Feature diagram of the "watch" system family shows the diagram of
features that depicts combinations of the different functionalities listed above and
describes the products to be included in the system family.

Fig. 4. Feature diagram of the "watch" system family

2.2 Variation Points and Variation Groups

An SFM factorizes several product models in one. It is therefore made up of common
elements and variable elements, the latter being also known as variation points. Model
elements not marked as variation points are implicitly considered common to all
systems.

Specifying that a model element is variable is not sufficient to describe an SFM.
This is because variabilities not only serve to locally specify a model, they also
constrain one another. To fill the gap left here, several approaches propose
mechanisms to add constraints between variations: in one approach [12], a
dependency stereotyped "requires" is used to declare that a variation point requires
another variation point; in another approach [13], OCL constraints are used to add
variation point dependencies that likewise are a powerful mechanism for constraining
variation points.

In order to support this concept of constraints between variation points, we have
introduced the concept of variation group as depicted in Fig. 5. SyF metamodel for
variability modeling. A variation group contains a set of variation points and
constrains all owned elements such as sets of OCL constraints.

 Using Variation Propagation for Model-Driven Management of a System Family 227

VariationGroup

+kind:VariationGroupKind
previous+

next+

Motivation

+kind:MotivationKind

+content:String

bec auseOf+

VariationPoint

(from FAMILIES_UnifiedMM _ForPFVM::Model relations)

owns+ 1..*

owners+ 1..*

Fig. 5. SyF metamodel for variability modeling

A variation group may be any one of the types defined in the VariationGroupKind
enumeration:

• And – all variation points are contained in the system model.
• Alternative – only one variation point is contained in the system model.
• Optional – each variation point may or may not be contained in the product model.

Variation points of this kind of group are never constrained and remain
independent.

• OneAmongSeveral – at least one variation point is contained in the system model.
It is then possible for several variation points of this type to be contained in the
system model.

• Implication – a variation point implies the existence of another variation point in
the system model.

The variation group is always associated with a Motivation element. This model
element is used to document the reason for a variation group. A Motivation class
contains both of the following attributes:

• kind – defines the format of the comment: Natural language or OCL.
• comment – describes the motivation by type of language used.

Fig. 6. Two variation points for the DualTime feature

For the watch family, the DualTime mode is an example of a variable feature. In the
SFM, the DualTime mode involves two operations setDualTime and closeDualTime,
which are defined in the WatchControl interface (Fig. 8. Propagation of two variation
points for the DualTime feature). The operations setDualTime and closeDualTime are
therefore each given a "variation Point" stereotype (Fig. 6).

228 P. Tessier et al.

Fig. 7. Example of variation group utilization

Both setDualTime and closeDualTime cover the same requirement – DualTime mode
– and are thus linked to each another. Either the watch has a DualTime functionality
and, if so, the WatchControl interface has both operations; or the watch does not offer
this mode, and neither of the two operations should appear in the corresponding watch
model. Both points of variation must therefore be constrained by a relation “And”.

2.3 Variation Transitivity
The SyF solution for achieving consistency between the views contained in a model
and determining variation point impact in the SFM, is to propagate the variabilities
specified by the user through a model. This causes new variation points, called
"propagated points" or "propagated variation groups" to appear.

Transitivity mecanisms are classified into three categories:

• Variation transitivity patterns applying to the structural model: in this scheme, a
variation point placed on an interface affects all the classes that implement it.

• Variation transitivity patterns applying from structural model to behavior model: in
this scheme, a variation point placed on a class operation affects the transitions of
the state machine associated with that class.

• Variation transitivity patterns applying to the behavior model: here a variation
point on a machine state can affect outgoing and incoming transitions.

For behavior model purposes, the mechanisms of analysis developed by the SyF
approach enable derivation of a protocol state machine without causing
malformations. This step is based on use of formal techniques originating from graph
theories to calculate state machines derived from a protocol machine with variability.
For reasons of space, it cannot be described in greater detail here.

2.4 Application to the Watch Family

By applying the rules of variability propagation described in section 2.3, the
DualTime variation group can be defined as described in Fig. 7. Example of variation
group utilization. The relationship linking the two variation points is the "And" type.
This constraint ensures that the two variation points are selected together, not
independently from one another.

Fig. 8. Propagation of two variation points for the DualTime feature

 Using Variation Propagation for Model-Driven Management of a System Family 229

The Watch class setDualTime and closeDualTime operations then become
variation points by transitivity (Fig. 8).

Under the SyF approach, two new variation groups are created to specify
constraints relating to the impact of variation points (Fig. 9). The relationship between
these new variation points and those at the origin of propagation is the "and" type.
This constraint ensures that variation points will only appear together in a model.

Fig. 9. Example of a variation group appearing by transitivity

An SFM contains a set of variation points and a set of constraints. The variation
points are placed and constrained by means of variation groups to ensure compliance
with constraints induced by the feature diagram derived from system family
requirements. The points are then propagated through the system family. This causes
new variation points, called "propagated points," and new variation groups to appear.

Propagation ensures the consistency of various system views and enables
identification of all elements impacted by a variation point.

Not only do the constraints introduced by variation groups guarantee the
consistency of all variation points, they also induce a side effect for calculation of the
different possible derivations. Product derivation consists of choosing a set of
variation points that comply with all the constraints imposed by the variation groups.
As a result, calculation of possible derivations involves calculating possible sets of
variation points complying with these constraints.

3 Management of SFs with a Decision Model

A decision model is built to ensure appropriate SFM coverage and derive products
from the SFM. This section gives a quick presentation of the metamodel used to
describe the decision model, and explains how it serves as an SFM validation and
derivation tool.

3.1 Language Concepts Required to Describe Decision Models

The decision model is intended as an aid to deriving an SM from an SFM (Fig. 10.
Metamodel of concepts for describing decision models). It is a tree consisting of
derivation paths, and each path is a sequence of possible choices related to the
variation points and variation groups specified in the SFM. Each derivation path leads
to a well-formed model of a possible product from the family of interest.

230 P. Tessier et al.

The decision model contains sets of decisions. For each decision, the designer must
choose a resolution. This resolution implies a set of effects on the system family
model. Such effects can be described using model transformation language (e.g. a
QVT-compliant language).

The model-driven development (MDD) process calls for model transformation to
be aimed at facilitating transition from an SFM to an SM. For this reason, the concept
of Effect is defined and attached to any decision of a decision model. An effect may
be the TransformationEffect type, which is in fact the model transformation required
to account for a choice; and, in this process, the decision model, together with scripts
for executing model transformation, are automatically generated.

Fig. 10. Metamodel of concepts for describing decision models

3.2 Decision Modeling

By selecting a set of variation points, the user can choose a specific system. Decision
modeling then consists of calculating all the sets of variation points that comply with
all the constraints derived from the variation group. Such calculations can be long and
complex and therefore require use of Quine McCluskey-type [8] constraints. Each set
of solutions obtained results in a set of choices for the variation points. This in turn
provides the resolutions needed to build a product. Each group of variations then
becomes a potential element of decision.

To build the decision model, it then suffices to treat the sets of choices one by one.
When the path is identical, no new decision nodes are created.

After adding all the sets of decisions and choices for all products in the decision
model, the designer must identify any unnecessary decision nodes. An unnecessary
node is one associated with a single choice. All such nodes are then eliminated. The
effects of the associated choices are, however, preserved.

In the example used here as an illustration, the decision model is built from the set
of systems whose decision sets are classified in the order defined by the designer. To
obtain a new decision model, the user simply changes the order of the decisions.

The number of decision models depends on the number of decisions to be taken,
i.e. the number of variation groups existing in the SFM.

For a number m of variation groups, there are !m possible combinations. The
computing time required to build all the decision models is long, and this is not
necessarily beneficial to the designer.

 Using Variation Propagation for Model-Driven Management of a System Family 231

To reduce the number of decision models linked to an SFM, the designer can
therefore supply a partial or total order for the variation groups. To do so, he uses the
"previous" and "next" properties of the VariationGroup stereotype.

Creation of the decision model facilitates efficient management and utilization of
the SF model.

4 Use of the Decision Model

The decision model obtained by the process described above is a tree structure in
which each branch corresponds to a specific system. This tree may take various
forms. Its decision nodes may be binary or n-ary, depending on the number of
possible choices for a decision. Fig. 11. Decision model for the watch family shows a
decision model for a complex case allowing creation of 20 products.
Its decision nodes are organized horizontally and its products vertically.

 DualTime

VibrationTrigger

Alarm

BuzzerTrigger

Heart Controler

Fig. 11. Decision model for the watch family

4.1 Verifying Coverage with Respect to Application Domain

Firstly, the decision model verifies that the products covered by the SFM can be
implemented. Where this is not the case, it is possible to identify any choices that are
not possible and modify the constraints placed on the variations.

Comparison of the decision model with the feature model also systematically
compares the truly feasible systems with those considered so at the time of application
domain analysis. This approach therefore compares an SFM as it is (Decision model)
with the requirement described by the feature diagram.

This comparison may identify numerous cases of:

• failure to produce the required systems: In such cases, the decision model does not
allow production of the systems identified in the feature model.

• production of too many systems. The decision model then shows that systems not
considered feasible at the time of analysis can in fact be implemented.

In both cases, the decision that causes deviation from the feature model can be easily
identified. Since a decision corresponds to a group of variations, it is easy to identify
the variations causing the problem and to modify either the variation points or the
constraints included in the group of variations not complying with the feature diagram
requirements.

This decision model can be used at any stage in SF modeling and thus guides the
designer through said modeling stages by verifying compliance with user
requirements at each stage.

232 P. Tessier et al.

The decision model therefore not only serves as a method for stage by stage SFM
analysis, but can also support a tool that derives SF models for a specific system
mode.

4.2 Derivation

The purpose of derivation is to choose a decision model path and transform it as
necessary in the SF model.

To do so, the Effect element of the metamodel used to describe the decision model
contains relevant model transformation instructions: impact of variation points in the
SFM.

The principle for obtaining a specific derivation model is to collect all "Effect"-
type elements from the path, execute their lists of instructions, then clean the model of
all variability expression elements (variation groups, stereotypes, etc.).

For this purpose, an "SFManager" class is created in the SFM at the time of
decision model creation. This class contains as many operations as systems that can
be implemented. Each of the methods contains the model transformation codes for
decision effects, along with a code for cleaning the SFM. The SFManager class also
contains the operation ‘run()’ in which the designer writes the method call for the
desired product.

5 Conclusion

System family approaches are applied to produce systems that have common features.
The models built under these methodologies contain both common and variable
elements. Several difficulties arise in the process of integrating variable elements.
They relate to: expressing variability in a system family model, ensuring consistency
between SFM views, validating correct SFM coverage of requirements expressed and
deriving an SFM.

The SyF approach proposes mechanisms for managing these problems. By
affording variation point transitivity throughout the model, it can ensure consistency
and identify the impact of the variation points. The decision model can also verify
coverage of the application domain and help the user to automate the derivation
process.An SyF tool has been developed as a plugin for the Poseidon SDE1. Its tools
are coded in MTL for model manipulation and generate MTL code for derivation
purposes.

The objective of future research will be to refine variation management by adding
management functionality to the activity and sequence diagrams.

References

1. Clements, P.C.: Software Product Lines – Basic Concepts and Research Challenges. in
International Colloquium of the Sonderforschungsbereich 501. Tagungszentrum
Betzenberg, Kaiserslautern (2003).

2. Clements, P. and L.M. Northrop : Software Product Lines: Practices and Patterns. Addison
Wesley, Boston (2001).

1. http://www.gentleware.com

 Using Variation Propagation for Model-Driven Management of a System Family 233

3. Kang, K.C., et al.: Feature-Oriented Domain Analysis (FODA). Carnegie Mellon
University (1990).

4. Griss, M.L.: Implementing product line features with Component Reuse. In 6th
International Conference on Software Reuse, Vienna, Austria (2000).

5. Svahnberg, M., J.v. Gurp, and J. Bosch: On the Notion of Variability in Software Product
Lines. In IEEE/IFIP Conference on Software Architecture (WICSA 2001). (2001).

6. Riebisch, M., et al : Extending Feature Diagrams with UML Multiplicities. in 6th
Conference on Integrated Design & Process Technology; Pasadena, California, USA
(2002).

7. Chastek, G., et al: Product Line Analysis: A Practical Introduction. 2001. SEI Carnegie
Mellon University (2001).

8. Atkinson, C., J. Bayer, and D. Muthig: Component-Based Product Line Development : The
KobrA Approach. in the First Software Product Line Conference, Boston (2000).

9. Monestel, L., T. Ziadi, and J.-M. Jézéquel. Product Line Engineering : Product Derivation.
Model Driven Architecture and Product Line Engineering, associated to the SPLC2
conference, San Diego (2002).

10. Ziadi, T., L. Hélouët, and J.-M. Jézéquel: Modeling behavior in product-lines. International
Workshop on Requirements Engineering for Product Lines, Essen/Germany (2002).

11. Ziadi, T., J.-M. Jézéquel, and F. Fondement: Product line derivation with uml. in Software
Variability Management Workshop. University of Groningen Departement of Mathematics
and Computing Science, (2003)

12. Clauß, M: Modeling variability with UML. Net.ObjectDays.. Erfurt, Germany. (2001)
13. Ziadi, T., L. Hélouët, and J.-M. Jézéquel: Towards a UML Profile for Software Product

Lines. International Workshop on Product Family Engineering. Seana / Italy, Springer-
Verlag (2003).

Author Index

Alves, Vander 70
Anfurrutia, Felipe I. 210

Batory, Don 7
Böckle, Günter 124
Borba, Paulo 70
Borg, Kjell 33
Börstler, Jürgen 33
Bosch, Jan 2

Clements, Paul 136
Cole, Leonardo 70

Dı́az, Oscar 210

Eriksson, Magnus 33
Etxeberria, Leire 174

Geib, Jean-Marc 222
Gérard, Sébastien 222
Ghezala, Henda Hajjami Ben 113

Haugen, Øystein 102
Helferich, Andreas 162
Herzwurm, Georg 162

Jarzabek, Stan 57
Jilani, Lamia Labed 113

Kang, Kyo Chul 45
Katayama, Takuya 150
Kelly, Steven 198
Kim, Byungkil 45
Kim, Moonzoo 45

Kishi, Tomoji 150
Krueger, Charles W. 135

Lamine, Sana Ben Abdallah Ben 113
Lee, Jaejoon 45
Lichter, Horst 82

Matos Jr., Pedro 70
Matturro, Gerardo 96
Møller-Pedersen, Birger 102

Niemelä, Eila 186
Noda, Natsuko 150

Oldevik, Jon 102

Ramalho, Geber 70
Reiser, Mark-Oliver 21

Sagardui, Goiuria 174
Schockert, Sixten 162
Silva, Andrés 96

Terrier, François 222
Tessier, Patrick 222
Tolvanen, Juha-Pekka 198
Trew, Tim 137
Trujillo, Salvador 210

on der Maßen, Thomas 82

Weber, Matthias 21
Weiss, David M. 1
Wesselius, Jacco H. 89

Zhang, Weishan 57

v

	Frontmatter
	Keynotes
	Next Generation Software Product Line Engineering
	Software Product Families in Nokia

	Feature Modelling
	Feature Models, Grammars, and Propositional Formulas
	Using Product Sets to Define Complex Product Decisions
	The PLUSS Approach -- Domain Modeling with Features, Use Cases and Use Case Realizations

	Re-engineering
	Feature-Oriented Re-engineering of Legacy Systems into Product Line Assets {\itshape -- a Case Study }
	Reuse without Compromising Performance: Industrial Experience from RPG Software Product Line for Mobile Devices
	Extracting and Evolving Mobile Games Product Lines

	Short Papers
	Determining the Variation Degree of Feature Models
	Modeling Architectural Value: Cash Flow, Time and Uncertainty
	A Knowledge-Based Perspective for Preparing the Transition to a Software Product Line Approach

	Strategies
	Comparison of System Family Modeling Approaches
	Cost Estimation for Product Line Engineering Using COTS Components
	Innovation Management for Product Line Engineering Organizations

	Panels
	Panel: Change is Good. You Go First
	Panel: A Competition of Software Product Line Economic Models

	Validation
	Enabling the Smooth Integration of Core Assets: Defining and Packaging Architectural Rules for a Family of Embedded Products
	Design Verification for Product Line Development

	Scoping and Architecture
	QFD-PPP: Product Line Portfolio Planning Using Quality Function Deployment
	Product-Line Architecture: New Issues for Evaluation
	Strategies of Product Family Architecture Development

	Product Derivation
	Defining Domain-Specific Modeling Languages to Automate Product Derivation: Collected Experiences
	Supporting Production Strategies as Refinements of the Production Process
	Using Variation Propagation for Model-Driven Management of a System Family

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

